SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Why are you so afraid?',
    '¿Por qué tienes tanto miedo?',
    'Segundos después, un asaltante enmascarado vuela la puerta de la habitación con explosivos, mata sus asesores y luego procede a secuestrar a Ashton.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

  • Datasets: mse_evaluation-en-es, mse_evaluation-en-pt and mse_evaluation-en-pt-br
  • Evaluated with MSEEvaluator
Metric mse_evaluation-en-es mse_evaluation-en-pt mse_evaluation-en-pt-br
negative_mse -0.0463 -0.0447 -0.0397

Translation

  • Datasets: translation_evaluation-en-es, translation_evaluation-en-pt and translation_evaluation-en-pt-br
  • Evaluated with TranslationEvaluator
Metric translation_evaluation-en-es translation_evaluation-en-pt translation_evaluation-en-pt-br
src2trg_accuracy 0.9417 0.9513 0.9789
trg2src_accuracy 0.9294 0.9384 0.9728
mean_accuracy 0.9355 0.9448 0.9758

Semantic Similarity

Metric Value
pearson_cosine 0.8102
spearman_cosine 0.8171

Training Details

Training Dataset

Unnamed Dataset

  • Size: 28,783,032 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 26.03 tokens
    • max: 131 tokens
    • min: 4 tokens
    • mean: 41.0 tokens
    • max: 219 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    Unlike last year, the eye of the storm this year is Sindh where flood waters have razed in numerous villages and displaced millions. A diferencia del año pasado, el ojo de la tormenta este año está en Sindh , donde las aguas de las inundaciones han arrasado numerosas aldeas y desplazado a millones. [-0.007684561889618635, 0.008107933215796947, -0.011652171611785889, 0.025253329426050186, 0.03101799078285694, ...]
    Spotted taxis to Jeradda. Vi taxis a Jeradda. [0.02564830146729946, -0.0010036780731752515, 0.04843117669224739, -0.002532949671149254, 0.01702607050538063, ...]
    The page has also inspired several other copycat pages on Facebook with similar titles Asimismo, la página ha inspirado otras páginas imitadoras en Facebook con títulos similares. [-0.04195510596036911, -0.026423752307891846, -0.08573361486196518, 0.0040077404119074345, -0.02051585540175438, ...]
  • Loss: MSELoss

Evaluation Dataset

Unnamed Dataset

  • Size: 30,000 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 3 tokens
    • mean: 22.91 tokens
    • max: 104 tokens
    • min: 3 tokens
    • mean: 36.22 tokens
    • max: 203 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    It goes with your hair. Va bien con su pelo. [0.013736451044678688, -0.014708670787513256, 0.020351335406303406, -0.02381581813097, -0.013853796757757664, ...]
    We know that criminality is not limited to our continent, but consists of worldwide networks. Sabemos que la criminalidad no está limitada a nuestro continente, sino que consta de redes mundiales. [0.03908732160925865, 0.0009072094107978046, 0.0007832577684894204, -0.044317133724689484, 0.09392903745174408, ...]
    Mm-hm. All except the biggest one. A todos, excepto al más grande. [-0.024451246485114098, -0.03345730900764465, -0.04918806627392769, -0.05197983607649803, -0.03147919476032257, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • gradient_accumulation_steps: 2
  • learning_rate: 0.0003
  • num_train_epochs: 8
  • warmup_ratio: 0.15
  • bf16: True
  • dataloader_num_workers: 8

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0003
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.15
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss mse_evaluation-en-es_negative_mse translation_evaluation-en-es_mean_accuracy mse_evaluation-en-pt_negative_mse translation_evaluation-en-pt_mean_accuracy mse_evaluation-en-pt-br_negative_mse translation_evaluation-en-pt-br_mean_accuracy sts17-es-en_spearman_cosine
0.0178 500 0.0009 - - - - - - - -
0.0356 1000 0.0008 - - - - - - - -
0.0534 1500 0.0007 - - - - - - - -
0.0712 2000 0.0007 0.0005 -0.10122959 0.6481 -0.10340506 0.6205 -0.10725543 0.5905 0.3595
0.0889 2500 0.0006 - - - - - - - -
0.1067 3000 0.0006 - - - - - - - -
0.1245 3500 0.0006 - - - - - - - -
0.1423 4000 0.0006 0.0004 -0.08365556 0.7992 -0.08426243 0.8051 -0.08419664 0.8281 0.4937
0.1601 4500 0.0005 - - - - - - - -
0.1779 5000 0.0005 - - - - - - - -
0.1957 5500 0.0005 - - - - - - - -
0.2135 6000 0.0005 0.0004 -0.07376316 0.8593 -0.073814325 0.8695 -0.07152441 0.9081 0.6214
0.2312 6500 0.0005 - - - - - - - -
0.2490 7000 0.0005 - - - - - - - -
0.2668 7500 0.0005 - - - - - - - -
0.2846 8000 0.0005 0.0004 -0.06761765 0.8821 -0.067249514 0.8938 -0.06428356 0.9331 0.6909
0.3024 8500 0.0005 - - - - - - - -
0.3202 9000 0.0005 - - - - - - - -
0.3380 9500 0.0004 - - - - - - - -
0.3558 10000 0.0004 0.0003 -0.06365564 0.8960 -0.06300899 0.9072 -0.059927516 0.9428 0.7220
0.3736 10500 0.0004 - - - - - - - -
0.3913 11000 0.0004 - - - - - - - -
0.4091 11500 0.0004 - - - - - - - -
0.4269 12000 0.0004 0.0003 -0.060988236 0.905 -0.060110345 0.9161 -0.0567778 0.9517 0.7385
0.4447 12500 0.0004 - - - - - - - -
0.4625 13000 0.0004 - - - - - - - -
0.4803 13500 0.0004 - - - - - - - -
0.4981 14000 0.0004 0.0003 -0.05906638 0.9109 -0.0581316 0.9222 -0.05460985 0.9569 0.7502
0.5159 14500 0.0004 - - - - - - - -
0.5336 15000 0.0004 - - - - - - - -
0.5514 15500 0.0004 - - - - - - - -
0.5692 16000 0.0004 0.0003 -0.057560425 0.9152 -0.05654549 0.9244 -0.052867033 0.9596 0.7595
0.5870 16500 0.0004 - - - - - - - -
0.6048 17000 0.0004 - - - - - - - -
0.6226 17500 0.0004 - - - - - - - -
0.6404 18000 0.0004 0.0003 -0.05640703 0.9160 -0.055421203 0.9271 -0.051537633 0.9621 0.7660
0.6582 18500 0.0004 - - - - - - - -
0.6760 19000 0.0004 - - - - - - - -
0.6937 19500 0.0004 - - - - - - - -
0.7115 20000 0.0004 0.0003 -0.055573538 0.9194 -0.054422 0.9296 -0.050369795 0.9634 0.7793
0.7293 20500 0.0004 - - - - - - - -
0.7471 21000 0.0004 - - - - - - - -
0.7649 21500 0.0004 - - - - - - - -
0.7827 22000 0.0004 0.0003 -0.054716494 0.9215 -0.05353505 0.9318 -0.049468324 0.9652 0.7807
0.8005 22500 0.0004 - - - - - - - -
0.8183 23000 0.0004 - - - - - - - -
0.8360 23500 0.0004 - - - - - - - -
0.8538 24000 0.0004 0.0003 -0.054093935 0.9230 -0.052881736 0.9325 -0.04880123 0.9662 0.7913
0.8716 24500 0.0004 - - - - - - - -
0.8894 25000 0.0004 - - - - - - - -
0.9072 25500 0.0004 - - - - - - - -
0.9250 26000 0.0004 0.0003 -0.05346901 0.9239 -0.0522654 0.9354 -0.048117638 0.9675 0.7909
0.9428 26500 0.0004 - - - - - - - -
0.9606 27000 0.0004 - - - - - - - -
0.9784 27500 0.0004 - - - - - - - -
0.9961 28000 0.0004 0.0003 -0.05307414 0.9252 -0.051890973 0.9358 -0.047557026 0.968 0.7980
1.0139 28500 0.0004 - - - - - - - -
1.0317 29000 0.0004 - - - - - - - -
1.0495 29500 0.0004 - - - - - - - -
1.0673 30000 0.0004 0.0003 -0.052725878 0.9255 -0.051456288 0.9363 -0.04720709 0.9678 0.7961
1.0851 30500 0.0004 - - - - - - - -
1.1029 31000 0.0004 - - - - - - - -
1.1206 31500 0.0004 - - - - - - - -
1.1384 32000 0.0004 0.0003 -0.05232365 0.9254 -0.051122643 0.9365 -0.046895616 0.9697 0.7980
1.1562 32500 0.0004 - - - - - - - -
1.1740 33000 0.0004 - - - - - - - -
1.1918 33500 0.0004 - - - - - - - -
1.2096 34000 0.0004 0.0003 -0.052056298 0.9265 -0.050777122 0.9382 -0.04632004 0.9692 0.8033
1.2274 34500 0.0004 - - - - - - - -
1.2452 35000 0.0004 - - - - - - - -
1.2629 35500 0.0004 - - - - - - - -
1.2807 36000 0.0004 0.0003 -0.051708605 0.9264 -0.050396774 0.9375 -0.04602845 0.9700 0.8045
1.2985 36500 0.0004 - - - - - - - -
1.3163 37000 0.0004 - - - - - - - -
1.3341 37500 0.0004 - - - - - - - -
1.3519 38000 0.0003 0.0003 -0.05145791 0.9271 -0.050056294 0.9383 -0.045601957 0.9699 0.8009
1.3697 38500 0.0003 - - - - - - - -
1.3875 39000 0.0003 - - - - - - - -
1.4053 39500 0.0003 - - - - - - - -
1.4230 40000 0.0003 0.0003 -0.05112224 0.9286 -0.049697492 0.9385 -0.04513698 0.9706 0.8026
1.4408 40500 0.0003 - - - - - - - -
1.4586 41000 0.0003 - - - - - - - -
1.4764 41500 0.0003 - - - - - - - -
1.4942 42000 0.0003 0.0003 -0.05098933 0.9277 -0.04952781 0.9397 -0.045018516 0.9706 0.8064
1.5120 42500 0.0003 - - - - - - - -
1.5298 43000 0.0003 - - - - - - - -
1.5476 43500 0.0003 - - - - - - - -
1.5653 44000 0.0003 0.0003 -0.05063988 0.9300 -0.04921307 0.9405 -0.044630885 0.971 0.8053
1.5831 44500 0.0003 - - - - - - - -
1.6009 45000 0.0003 - - - - - - - -
1.6187 45500 0.0003 - - - - - - - -
1.6365 46000 0.0003 0.0003 -0.050518364 0.9292 -0.04895482 0.9400 -0.044507742 0.9717 0.8025
1.6543 46500 0.0003 - - - - - - - -
1.6721 47000 0.0003 - - - - - - - -
1.6899 47500 0.0003 - - - - - - - -
1.7077 48000 0.0003 0.0003 -0.05039251 0.9295 -0.048876137 0.9402 -0.044356253 0.9717 0.8000
1.7254 48500 0.0003 - - - - - - - -
1.7432 49000 0.0003 - - - - - - - -
1.7610 49500 0.0003 - - - - - - - -
1.7788 50000 0.0003 0.0003 -0.050093956 0.9299 -0.04855838 0.9405 -0.044041798 0.9715 0.8029
1.7966 50500 0.0003 - - - - - - - -
1.8144 51000 0.0003 - - - - - - - -
1.8322 51500 0.0003 - - - - - - - -
1.8500 52000 0.0003 0.0003 -0.04991082 0.9303 -0.04846586 0.9408 -0.043873988 0.972 0.8081
1.8677 52500 0.0003 - - - - - - - -
1.8855 53000 0.0003 - - - - - - - -
1.9033 53500 0.0003 - - - - - - - -
1.9211 54000 0.0003 0.0003 -0.049736623 0.9308 -0.048238307 0.9412 -0.04365188 0.9719 0.8024
1.9389 54500 0.0003 - - - - - - - -
1.9567 55000 0.0003 - - - - - - - -
1.9745 55500 0.0003 - - - - - - - -
1.9923 56000 0.0003 0.0003 -0.049630426 0.9304 -0.048146106 0.9409 -0.043522894 0.9724 0.8083
2.0100 56500 0.0003 - - - - - - - -
2.0278 57000 0.0003 - - - - - - - -
2.0456 57500 0.0003 - - - - - - - -
2.0634 58000 0.0003 0.0003 -0.04953543 0.9315 -0.04801518 0.9408 -0.04336739 0.9729 0.8088
2.0812 58500 0.0003 - - - - - - - -
2.0990 59000 0.0003 - - - - - - - -
2.1168 59500 0.0003 - - - - - - - -
2.1346 60000 0.0003 0.0003 -0.049395695 0.9298 -0.047923535 0.9415 -0.04315244 0.9718 0.8021
2.1523 60500 0.0003 - - - - - - - -
2.1701 61000 0.0003 - - - - - - - -
2.1879 61500 0.0003 - - - - - - - -
2.2057 62000 0.0003 0.0003 -0.04926271 0.9308 -0.04775018 0.9415 -0.043019187 0.9728 0.8044
2.2235 62500 0.0003 - - - - - - - -
2.2413 63000 0.0003 - - - - - - - -
2.2591 63500 0.0003 - - - - - - - -
2.2769 64000 0.0003 0.0003 -0.049204785 0.9310 -0.047680687 0.9414 -0.04296754 0.9726 0.8056
2.2946 64500 0.0003 - - - - - - - -
2.3124 65000 0.0003 - - - - - - - -
2.3302 65500 0.0003 - - - - - - - -
2.3480 66000 0.0003 0.0003 -0.049087144 0.9310 -0.04754995 0.9413 -0.042845335 0.9732 0.8008
2.3658 66500 0.0003 - - - - - - - -
2.3836 67000 0.0003 - - - - - - - -
2.4014 67500 0.0003 - - - - - - - -
2.4192 68000 0.0003 0.0003 -0.049001597 0.9308 -0.04741441 0.9419 -0.042673677 0.9733 0.8080
2.4369 68500 0.0003 - - - - - - - -
2.4547 69000 0.0003 - - - - - - - -
2.4725 69500 0.0003 - - - - - - - -
2.4903 70000 0.0003 0.0003 -0.048882827 0.9321 -0.047341634 0.9422 -0.042661835 0.9734 0.8087
2.5081 70500 0.0003 - - - - - - - -
2.5259 71000 0.0003 - - - - - - - -
2.5437 71500 0.0003 - - - - - - - -
2.5615 72000 0.0003 0.0003 -0.048752587 0.9314 -0.04728313 0.9415 -0.042584546 0.9734 0.8069
2.5793 72500 0.0003 - - - - - - - -
2.5970 73000 0.0003 - - - - - - - -
2.6148 73500 0.0003 - - - - - - - -
2.6326 74000 0.0003 0.0003 -0.04871502 0.9319 -0.047124594 0.9424 -0.04228281 0.9733 0.8082
2.6504 74500 0.0003 - - - - - - - -
2.6682 75000 0.0003 - - - - - - - -
2.6860 75500 0.0003 - - - - - - - -
2.7038 76000 0.0003 0.0003 -0.04866153 0.9320 -0.047041744 0.9432 -0.04232903 0.9736 0.8078
2.7216 76500 0.0003 - - - - - - - -
2.7393 77000 0.0003 - - - - - - - -
2.7571 77500 0.0003 - - - - - - - -
2.7749 78000 0.0003 0.0003 -0.04851333 0.9323 -0.046925455 0.9424 -0.04223377 0.9735 0.8134
2.7927 78500 0.0003 - - - - - - - -
2.8105 79000 0.0003 - - - - - - - -
2.8283 79500 0.0003 - - - - - - - -
2.8461 80000 0.0003 0.0003 -0.048524972 0.9329 -0.04693048 0.9425 -0.042133827 0.9725 0.8085
2.8639 80500 0.0003 - - - - - - - -
2.8817 81000 0.0003 - - - - - - - -
2.8994 81500 0.0003 - - - - - - - -
2.9172 82000 0.0003 0.0003 -0.048406757 0.9336 -0.04686156 0.9433 -0.042108946 0.9736 0.8098
2.9350 82500 0.0003 - - - - - - - -
2.9528 83000 0.0003 - - - - - - - -
2.9706 83500 0.0003 - - - - - - - -
2.9884 84000 0.0003 0.0003 -0.048344385 0.9317 -0.046766046 0.9432 -0.042005215 0.9736 0.8109
3.0062 84500 0.0003 - - - - - - - -
3.0239 85000 0.0003 - - - - - - - -
3.0417 85500 0.0003 - - - - - - - -
3.0595 86000 0.0003 0.0003 -0.048280284 0.9314 -0.04669383 0.9431 -0.041867185 0.9738 0.8065
3.0773 86500 0.0003 - - - - - - - -
3.0951 87000 0.0003 - - - - - - - -
3.1129 87500 0.0003 - - - - - - - -
3.1307 88000 0.0003 0.0003 -0.04822296 0.9325 -0.046689868 0.9425 -0.041927855 0.9735 0.8103
3.1485 88500 0.0003 - - - - - - - -
3.1662 89000 0.0003 - - - - - - - -
3.1840 89500 0.0003 - - - - - - - -
3.2018 90000 0.0003 0.0003 -0.048173092 0.9318 -0.046601273 0.9422 -0.041765593 0.9741 0.8067
3.2196 90500 0.0003 - - - - - - - -
3.2374 91000 0.0003 - - - - - - - -
3.2552 91500 0.0003 - - - - - - - -
3.2730 92000 0.0003 0.0003 -0.04806846 0.9333 -0.046525463 0.9425 -0.041717805 0.9735 0.8069
3.2908 92500 0.0003 - - - - - - - -
3.3086 93000 0.0003 - - - - - - - -
3.3263 93500 0.0003 - - - - - - - -
3.3441 94000 0.0003 0.0003 -0.04804208 0.9337 -0.04647612 0.9432 -0.041626267 0.9737 0.8102
3.3619 94500 0.0003 - - - - - - - -
3.3797 95000 0.0003 - - - - - - - -
3.3975 95500 0.0003 - - - - - - - -
3.4153 96000 0.0003 0.0003 -0.047956012 0.9349 -0.046421595 0.9436 -0.04157625 0.9745 0.8101
3.4331 96500 0.0003 - - - - - - - -
3.4509 97000 0.0003 - - - - - - - -
3.4686 97500 0.0003 - - - - - - - -
3.4864 98000 0.0003 0.0003 -0.04786362 0.9340 -0.046320286 0.9440 -0.04152808 0.9747 0.8075
3.5042 98500 0.0003 - - - - - - - -
3.5220 99000 0.0003 - - - - - - - -
3.5398 99500 0.0003 - - - - - - - -
3.5576 100000 0.0003 0.0003 -0.04788445 0.9331 -0.04631946 0.9435 -0.041442778 0.9738 0.8050
3.5754 100500 0.0003 - - - - - - - -
3.5932 101000 0.0003 - - - - - - - -
3.6110 101500 0.0003 - - - - - - - -
3.6287 102000 0.0003 0.0003 -0.047823686 0.9340 -0.046267267 0.9434 -0.041403364 0.9738 0.8120
3.6465 102500 0.0003 - - - - - - - -
3.6643 103000 0.0003 - - - - - - - -
3.6821 103500 0.0003 - - - - - - - -
3.6999 104000 0.0003 0.0003 -0.047792524 0.9339 -0.046203755 0.9437 -0.04136616 0.9744 0.8145
3.7177 104500 0.0003 - - - - - - - -
3.7355 105000 0.0003 - - - - - - - -
3.7533 105500 0.0003 - - - - - - - -
3.7710 106000 0.0003 0.0003 -0.047719087 0.9336 -0.046151668 0.9434 -0.04131788 0.9739 0.8092
3.7888 106500 0.0003 - - - - - - - -
3.8066 107000 0.0003 - - - - - - - -
3.8244 107500 0.0003 - - - - - - - -
3.8422 108000 0.0003 0.0003 -0.047663696 0.9340 -0.046100874 0.9437 -0.041290164 0.9743 0.8110
3.8600 108500 0.0003 - - - - - - - -
3.8778 109000 0.0003 - - - - - - - -
3.8956 109500 0.0003 - - - - - - - -
3.9134 110000 0.0003 0.0003 -0.04758864 0.9342 -0.045986332 0.9441 -0.04112862 0.9746 0.8107
3.9311 110500 0.0003 - - - - - - - -
3.9489 111000 0.0003 - - - - - - - -
3.9667 111500 0.0003 - - - - - - - -
3.9845 112000 0.0003 0.0003 -0.047555514 0.9334 -0.04596298 0.9442 -0.041138608 0.9747 0.8179
4.0023 112500 0.0003 - - - - - - - -
4.0201 113000 0.0003 - - - - - - - -
4.0379 113500 0.0003 - - - - - - - -
4.0556 114000 0.0003 0.0003 -0.047533713 0.9337 -0.045918535 0.9436 -0.041128766 0.9738 0.8093
4.0734 114500 0.0003 - - - - - - - -
4.0912 115000 0.0003 - - - - - - - -
4.1090 115500 0.0003 - - - - - - - -
4.1268 116000 0.0003 0.0003 -0.047445226 0.9337 -0.04587704 0.9437 -0.04101509 0.9745 0.8124
4.1446 116500 0.0003 - - - - - - - -
4.1624 117000 0.0003 - - - - - - - -
4.1802 117500 0.0003 - - - - - - - -
4.1979 118000 0.0003 0.0003 -0.047467772 0.9333 -0.04589099 0.944 -0.04104045 0.9747 0.8118
4.2157 118500 0.0003 - - - - - - - -
4.2335 119000 0.0003 - - - - - - - -
4.2513 119500 0.0003 - - - - - - - -
4.2691 120000 0.0003 0.0003 -0.047381546 0.9332 -0.045793895 0.944 -0.040915057 0.974 0.8102
4.2869 120500 0.0003 - - - - - - - -
4.3047 121000 0.0003 - - - - - - - -
4.3225 121500 0.0003 - - - - - - - -
4.3403 122000 0.0003 0.0003 -0.047399823 0.9331 -0.045784745 0.9444 -0.040900033 0.9744 0.8168
4.3580 122500 0.0003 - - - - - - - -
4.3758 123000 0.0003 - - - - - - - -
4.3936 123500 0.0003 - - - - - - - -
4.4114 124000 0.0003 0.0003 -0.04735861 0.9335 -0.045788392 0.9442 -0.04084509 0.9746 0.8194
4.4292 124500 0.0003 - - - - - - - -
4.4470 125000 0.0003 - - - - - - - -
4.4648 125500 0.0003 - - - - - - - -
4.4826 126000 0.0003 0.0003 -0.04727602 0.9330 -0.04571327 0.9435 -0.04079213 0.9747 0.8191
4.5003 126500 0.0003 - - - - - - - -
4.5181 127000 0.0003 - - - - - - - -
4.5359 127500 0.0003 - - - - - - - -
4.5537 128000 0.0003 0.0003 -0.04724487 0.9328 -0.045612063 0.9444 -0.040754147 0.9748 0.8109
4.5715 128500 0.0003 - - - - - - - -
4.5893 129000 0.0003 - - - - - - - -
4.6071 129500 0.0003 - - - - - - - -
4.6249 130000 0.0003 0.0003 -0.047237676 0.9351 -0.04558688 0.9440 -0.040685352 0.9747 0.8180
4.6427 130500 0.0003 - - - - - - - -
4.6604 131000 0.0003 - - - - - - - -
4.6782 131500 0.0003 - - - - - - - -
4.6960 132000 0.0003 0.0003 -0.047139905 0.9355 -0.04554107 0.9441 -0.040673897 0.9751 0.8108
4.7138 132500 0.0003 - - - - - - - -
4.7316 133000 0.0003 - - - - - - - -
4.7494 133500 0.0003 - - - - - - - -
4.7672 134000 0.0003 0.0003 -0.047172163 0.9341 -0.04553711 0.9432 -0.04068736 0.9751 0.8122
4.7850 134500 0.0003 - - - - - - - -
4.8027 135000 0.0003 - - - - - - - -
4.8205 135500 0.0003 - - - - - - - -
4.8383 136000 0.0003 0.0003 -0.04712533 0.9348 -0.045525618 0.9437 -0.040563405 0.9747 0.8150
4.8561 136500 0.0003 - - - - - - - -
4.8739 137000 0.0003 - - - - - - - -
4.8917 137500 0.0003 - - - - - - - -
4.9095 138000 0.0003 0.0003 -0.047049224 0.9345 -0.045493715 0.9433 -0.040560503 0.9744 0.8134
4.9273 138500 0.0003 - - - - - - - -
4.9451 139000 0.0003 - - - - - - - -
4.9628 139500 0.0003 - - - - - - - -
4.9806 140000 0.0003 0.0003 -0.047017988 0.9340 -0.045397308 0.944 -0.040537592 0.9745 0.8143
4.9984 140500 0.0003 - - - - - - - -
5.0162 141000 0.0003 - - - - - - - -
5.0340 141500 0.0003 - - - - - - - -
5.0518 142000 0.0003 0.0003 -0.047043595 0.9355 -0.045408167 0.9443 -0.040538292 0.9748 0.8144
5.0696 142500 0.0003 - - - - - - - -
5.0873 143000 0.0003 - - - - - - - -
5.1051 143500 0.0003 - - - - - - - -
5.1229 144000 0.0003 0.0003 -0.04705367 0.9355 -0.045425817 0.9442 -0.040479798 0.9747 0.8121
5.1407 144500 0.0003 - - - - - - - -
5.1585 145000 0.0003 - - - - - - - -
5.1763 145500 0.0003 - - - - - - - -
5.1941 146000 0.0003 0.0003 -0.046963915 0.9352 -0.04530141 0.9442 -0.04043464 0.9747 0.8117
5.2119 146500 0.0003 - - - - - - - -
5.2296 147000 0.0003 - - - - - - - -
5.2474 147500 0.0003 - - - - - - - -
5.2652 148000 0.0003 0.0003 -0.04690311 0.9348 -0.045300145 0.9454 -0.040396217 0.9757 0.8158
5.2830 148500 0.0003 - - - - - - - -
5.3008 149000 0.0003 - - - - - - - -
5.3186 149500 0.0003 - - - - - - - -
5.3364 150000 0.0003 0.0003 -0.04689872 0.9344 -0.04525921 0.9444 -0.040379316 0.9751 0.8148
5.3542 150500 0.0003 - - - - - - - -
5.3720 151000 0.0003 - - - - - - - -
5.3897 151500 0.0003 - - - - - - - -
5.4075 152000 0.0003 0.0003 -0.046854757 0.9349 -0.04521157 0.9442 -0.040353984 0.9747 0.8115
5.4253 152500 0.0003 - - - - - - - -
5.4431 153000 0.0003 - - - - - - - -
5.4609 153500 0.0003 - - - - - - - -
5.4787 154000 0.0003 0.0003 -0.046820126 0.9353 -0.045219637 0.9447 -0.04032354 0.975 0.8158
5.4965 154500 0.0003 - - - - - - - -
5.5143 155000 0.0003 - - - - - - - -
5.5320 155500 0.0003 - - - - - - - -
5.5498 156000 0.0003 0.0003 -0.046734486 0.9351 -0.045157243 0.9443 -0.04024718 0.9748 0.8164
5.5676 156500 0.0003 - - - - - - - -
5.5854 157000 0.0003 - - - - - - - -
5.6032 157500 0.0003 - - - - - - - -
5.6210 158000 0.0003 0.0003 -0.046766065 0.9356 -0.045193 0.9448 -0.04020705 0.9750 0.8161
5.6388 158500 0.0003 - - - - - - - -
5.6566 159000 0.0003 - - - - - - - -
5.6744 159500 0.0003 - - - - - - - -
5.6921 160000 0.0003 0.0003 -0.046653003 0.9349 -0.045091264 0.9447 -0.040132213 0.9752 0.8159
5.7099 160500 0.0003 - - - - - - - -
5.7277 161000 0.0003 - - - - - - - -
5.7455 161500 0.0003 - - - - - - - -
5.7633 162000 0.0003 0.0003 -0.046689577 0.9350 -0.045103475 0.9439 -0.040139068 0.9752 0.8148
5.7811 162500 0.0003 - - - - - - - -
5.7989 163000 0.0003 - - - - - - - -
5.8167 163500 0.0003 - - - - - - - -
5.8344 164000 0.0003 0.0003 -0.04665651 0.9354 -0.04505335 0.9442 -0.040089488 0.9745 0.8172
5.8522 164500 0.0003 - - - - - - - -
5.8700 165000 0.0003 - - - - - - - -
5.8878 165500 0.0003 - - - - - - - -
5.9056 166000 0.0003 0.0003 -0.046620764 0.9353 -0.045048986 0.9445 -0.04012648 0.9752 0.8171
5.9234 166500 0.0003 - - - - - - - -
5.9412 167000 0.0003 - - - - - - - -
5.9590 167500 0.0003 - - - - - - - -
5.9768 168000 0.0003 0.0003 -0.046547405 0.9346 -0.044982277 0.9449 -0.03998514 0.9749 0.8148
5.9945 168500 0.0003 - - - - - - - -
6.0123 169000 0.0003 - - - - - - - -
6.0301 169500 0.0003 - - - - - - - -
6.0479 170000 0.0003 0.0003 -0.046575766 0.9353 -0.044996176 0.9445 -0.040046997 0.9748 0.8173
6.0657 170500 0.0003 - - - - - - - -
6.0835 171000 0.0003 - - - - - - - -
6.1013 171500 0.0003 - - - - - - - -
6.1190 172000 0.0003 0.0003 -0.04653697 0.9344 -0.04489271 0.9442 -0.039989993 0.9751 0.8117
6.1368 172500 0.0003 - - - - - - - -
6.1546 173000 0.0003 - - - - - - - -
6.1724 173500 0.0003 - - - - - - - -
6.1902 174000 0.0003 0.0003 -0.046540864 0.9354 -0.044921882 0.9445 -0.039948173 0.9753 0.8154
6.2080 174500 0.0003 - - - - - - - -
6.2258 175000 0.0003 - - - - - - - -
6.2436 175500 0.0003 - - - - - - - -
6.2613 176000 0.0003 0.0003 -0.046473563 0.935 -0.044842277 0.9445 -0.039841603 0.9749 0.8173
6.2791 176500 0.0003 - - - - - - - -
6.2969 177000 0.0003 - - - - - - - -
6.3147 177500 0.0003 - - - - - - - -
6.3325 178000 0.0003 0.0003 -0.046434972 0.9357 -0.044857066 0.9446 -0.03987878 0.9747 0.8137
6.3503 178500 0.0003 - - - - - - - -
6.3681 179000 0.0003 - - - - - - - -
6.3859 179500 0.0003 - - - - - - - -
6.4037 180000 0.0003 0.0003 -0.046446227 0.9348 -0.044805177 0.9443 -0.03994019 0.9748 0.8147
6.4214 180500 0.0003 - - - - - - - -
6.4392 181000 0.0003 - - - - - - - -
6.4570 181500 0.0003 - - - - - - - -
6.4748 182000 0.0003 0.0003 -0.046411477 0.9350 -0.044835974 0.9449 -0.039863113 0.9753 0.8177
6.4926 182500 0.0003 - - - - - - - -
6.5104 183000 0.0003 - - - - - - - -
6.5282 183500 0.0003 - - - - - - - -
6.5460 184000 0.0003 0.0003 -0.04641683 0.9354 -0.04482221 0.9449 -0.039854627 0.9752 0.8135
6.5637 184500 0.0003 - - - - - - - -
6.5815 185000 0.0003 - - - - - - - -
6.5993 185500 0.0003 - - - - - - - -
6.6171 186000 0.0003 0.0003 -0.04635241 0.9343 -0.044773895 0.9448 -0.039753385 0.9750 0.8183
6.6349 186500 0.0003 - - - - - - - -
6.6527 187000 0.0003 - - - - - - - -
6.6705 187500 0.0003 - - - - - - - -
6.6883 188000 0.0003 0.0003 -0.046331976 0.9351 -0.044707794 0.9445 -0.039761487 0.9752 0.8197
6.7060 188500 0.0003 - - - - - - - -
6.7238 189000 0.0003 - - - - - - - -
6.7416 189500 0.0003 - - - - - - - -
6.7594 190000 0.0003 0.0003 -0.046344783 0.9355 -0.04470515 0.9448 -0.03973746 0.9758 0.8171

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
30
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jvanhoof/bge-small-en-gb-es-pt-br-256-long

Finetuned
(143)
this model

Evaluation results