File size: 2,494 Bytes
848b540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: 100_randomization_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 100_randomization_model

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6576
- Bleu: 0.0001
- Wer: 0.9576
- Rougel: 0.119
- Gen Len: 18.9986

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Wer    | Rougel | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:-------:|
| 2.5767        | 0.16  | 1000  | 1.6626          | 0.0001 | 0.954  | 0.1251 | 18.9985 |
| 1.9533        | 0.32  | 2000  | 1.5147          | 0.0001 | 0.9524 | 0.1284 | 18.9986 |
| 1.8318        | 0.48  | 3000  | 1.4392          | 0.0001 | 0.9518 | 0.1297 | 18.9986 |
| 1.7626        | 0.64  | 4000  | 1.3857          | 0.0001 | 0.9514 | 0.1306 | 18.9986 |
| 1.7199        | 0.8   | 5000  | 1.3553          | 0.0001 | 0.951  | 0.1312 | 18.9988 |
| 1.6727        | 0.96  | 6000  | 1.3325          | 0.0001 | 0.9507 | 0.1319 | 18.9986 |
| 1.9628        | 1.12  | 7000  | 1.8528          | 0.0001 | 0.9524 | 0.1293 | 18.9988 |
| 2.9138        | 1.28  | 8000  | 2.6299          | 0.0001 | 0.9568 | 0.1205 | 18.9986 |
| 3.5506        | 1.44  | 9000  | 2.7483          | 0.0001 | 0.958  | 0.1181 | 18.9987 |
| 3.5214        | 1.6   | 10000 | 2.7007          | 0.0001 | 0.9578 | 0.1186 | 18.9986 |
| 3.4669        | 1.76  | 11000 | 2.6699          | 0.0001 | 0.9576 | 0.1189 | 18.9986 |
| 3.4448        | 1.92  | 12000 | 2.6576          | 0.0001 | 0.9576 | 0.119  | 18.9986 |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.3.0.dev20240122+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1