|
--- |
|
language: zh |
|
tags: |
|
- roformer |
|
- pytorch |
|
- tf2.0 |
|
widget: |
|
- text: "今天[MASK]很好,我想去公园玩!" |
|
--- |
|
## 介绍 |
|
### tf版本 |
|
https://github.com/ZhuiyiTechnology/roformer |
|
|
|
### pytorch版本+tf2.0版本 |
|
https://github.com/JunnYu/RoFormer_pytorch |
|
|
|
## pytorch使用 |
|
```python |
|
import torch |
|
from transformers import RoFormerForMaskedLM, RoFormerTokenizer |
|
|
|
text = "今天[MASK]很好,我[MASK]去公园玩。" |
|
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") |
|
pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") |
|
pt_inputs = tokenizer(text, return_tensors="pt") |
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs).logits[0] |
|
pt_outputs_sentence = "pytorch: " |
|
for i, id in enumerate(tokenizer.encode(text)): |
|
if id == tokenizer.mask_token_id: |
|
tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) |
|
pt_outputs_sentence += "[" + "||".join(tokens) + "]" |
|
else: |
|
pt_outputs_sentence += "".join( |
|
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) |
|
print(pt_outputs_sentence) |
|
# pytorch: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 |
|
``` |
|
|
|
## tensorflow2.0使用 |
|
```python |
|
import tensorflow as tf |
|
from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM |
|
text = "今天[MASK]很好,我[MASK]去公园玩。" |
|
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") |
|
tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") |
|
tf_inputs = tokenizer(text, return_tensors="tf") |
|
tf_outputs = tf_model(**tf_inputs, training=False).logits[0] |
|
tf_outputs_sentence = "tf2.0: " |
|
for i, id in enumerate(tokenizer.encode(text)): |
|
if id == tokenizer.mask_token_id: |
|
tokens = tokenizer.convert_ids_to_tokens( |
|
tf.math.top_k(tf_outputs[i], k=5)[1]) |
|
tf_outputs_sentence += "[" + "||".join(tokens) + "]" |
|
else: |
|
tf_outputs_sentence += "".join( |
|
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) |
|
print(tf_outputs_sentence) |
|
# tf2.0: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 |
|
``` |
|
|
|
## 引用 |
|
|
|
Bibtex: |
|
|
|
```tex |
|
@misc{su2021roformer, |
|
title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, |
|
author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, |
|
year={2021}, |
|
eprint={2104.09864}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |