一、 个人在openwebtext数据集上训练得到的electra-small模型

二、 复现结果(dev dataset)

Model CoLA SST MRPC STS QQP MNLI QNLI RTE Avg.
Metrics MCC Acc Acc Spearman Acc Acc Acc Acc
ELECTRA-Small-OWT(original) 56.8 88.3 87.4 86.8 88.3 78.9 87.9 68.5 80.36
ELECTRA-Small-OWT (this) 55.82 89.67 87.0 86.96 89.28 80.08 87.50 66.07 80.30

三、 训练细节

  • 数据集 openwebtext
  • 训练batch_size 256
  • 学习率lr 5e-4
  • 最大句子长度max_seqlen 128
  • 训练total step 62.5W
  • GPU RTX3090
  • 训练时间总共耗费2.5天

四、 使用

import torch
from transformers.models.electra import ElectraModel, ElectraTokenizer
tokenizer = ElectraTokenizer.from_pretrained("junnyu/electra_small_discriminator")
model = ElectraModel.from_pretrained("junnyu/electra_small_discriminator")
inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)
    print(outputs[0].shape)
Downloads last month
19
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train junnyu/electra_small_discriminator