wav2vec2-large-xlsr-korean-demo-colab_epoch15

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4133
  • Wer: 0.3801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
16.9017 0.8 400 4.6273 1.0
4.4633 1.6 800 4.4419 1.0
4.2262 2.4 1200 3.8477 0.9994
2.4402 3.21 1600 1.3564 0.8111
1.3499 4.01 2000 0.9070 0.6664
0.9922 4.81 2400 0.7496 0.6131
0.8271 5.61 2800 0.6240 0.5408
0.6918 6.41 3200 0.5506 0.5026
0.6015 7.21 3600 0.5303 0.4935
0.5435 8.02 4000 0.4951 0.4696
0.4584 8.82 4400 0.4677 0.4432
0.4258 9.62 4800 0.4602 0.4307
0.3906 10.42 5200 0.4456 0.4195
0.3481 11.22 5600 0.4265 0.4062
0.3216 12.02 6000 0.4241 0.4046
0.2908 12.83 6400 0.4106 0.3941
0.2747 13.63 6800 0.4146 0.3855
0.2633 14.43 7200 0.4133 0.3801

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.