Whisper-squeezeformer-N6SQU-
This model is a fine-tuned version of openai/whisper-small on the LibriSpeech dataset. It achieves the following results on the evaluation set:
- Loss: 0.1579
- Wer: 5.4340
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2500
- training_steps: 45000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.7861 | 1.0 | 2500 | 3.8746 | 131.6000 |
2.7936 | 2.0 | 5000 | 0.2788 | 14.1395 |
0.1896 | 3.0 | 7500 | 0.2055 | 10.4534 |
0.1024 | 4.0 | 10000 | 0.1973 | 8.6903 |
0.0602 | 5.0 | 12500 | 0.1949 | 8.9470 |
0.1756 | 6.0 | 15000 | 0.1584 | 7.5034 |
0.1005 | 7.0 | 17500 | 0.1525 | 6.7046 |
0.0619 | 8.0 | 20000 | 0.1549 | 6.7712 |
0.2214 | 9.0 | 22500 | 0.1455 | 6.3185 |
0.1398 | 10.0 | 25000 | 0.1445 | 6.1625 |
0.1967 | 11.0 | 27500 | 0.1302 | 5.5177 |
0.1329 | 12.0 | 30000 | 0.1298 | 5.5482 |
0.1778 | 13.0 | 32500 | 0.1227 | 5.3237 |
0.1281 | 14.0 | 35000 | 0.1235 | 5.1792 |
0.3553 | 15.0 | 37500 | 0.1238 | 5.2362 |
0.2678 | 16.0 | 40000 | 0.1211 | 5.0670 |
0.8916 | 17.0 | 42500 | 0.1431 | 5.3618 |
0.8058 | 18.0 | 45000 | 0.1579 | 5.4340 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jun-han/Whisper-squeezeformer-v7
Base model
openai/whisper-small