File size: 2,658 Bytes
7bb6f38
 
 
81cabbe
7bb6f38
 
 
 
 
 
 
ff1dfd0
 
 
 
 
 
 
 
 
 
 
 
7bb6f38
 
 
 
 
2081854
81cabbe
2081854
 
 
 
 
7bb6f38
 
 
 
 
 
 
 
 
81cabbe
7bb6f38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- language: en
- generated_from_trainer
datasets:
- speech_commands
metrics:
- accuracy
model-index:
- name: wav2vec2-conformer-rel-pos-large-finetuned-speech-commands
  results:
  - task:
       type: audio-classification
       name: audio classification
    dataset: 
      type: speech_commands
      name: speech_commands
      split: v0.02
    metrics:
    - type: accuracy
      value: 0.9724
      name: accuracy
---

# wav2vec2-conformer-rel-pos-large-finetuned-speech-commands

This model is a fine-tuned version of [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large) on the speech_commands dataset.


It has been trained for 10 epochs on the [speech_commands](https://huggingface.co/datasets/speech_commands) dataset:
- subset v0.02
- full training set
- full validation set

It achieves the following results on the evaluation set:
- Loss: 0.5245
- Accuracy: 0.9724

## Model description


## Intended uses & limitations

The model can spot one of the following keywords: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow", "Backward", "Forward", "Follow", "Learn", "Visual".

## Training and evaluation data

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2901        | 1.0   | 83   | 2.0542          | 0.8875   |
| 1.8375        | 2.0   | 166  | 1.5610          | 0.9316   |
| 1.4957        | 3.0   | 249  | 1.1850          | 0.9558   |
| 1.1917        | 4.0   | 332  | 0.9159          | 0.9695   |
| 1.0449        | 5.0   | 415  | 0.7624          | 0.9687   |
| 0.9319        | 6.0   | 498  | 0.6444          | 0.9715   |
| 0.8559        | 7.0   | 581  | 0.5806          | 0.9711   |
| 0.8199        | 8.0   | 664  | 0.5394          | 0.9721   |
| 0.7949        | 9.0   | 747  | 0.5245          | 0.9724   |
| 0.7975        | 10.0  | 830  | 0.5256          | 0.9721   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1