Back to all models
token-classification mask_token: <mask>
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint
								$ curl -X POST \
https://api-inference.huggingface.co/models/julien-c/EsperBERTo-small-pos
Share Copied link to clipboard

Monthly model downloads

julien-c/EsperBERTo-small-pos julien-c/EsperBERTo-small-pos
38 downloads
last 30 days

pytorch

tf

Contributed by

julien-c Julien Chaumond company
4 models

How to use this model directly from the 🤗/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("julien-c/EsperBERTo-small-pos") model = AutoModelForTokenClassification.from_pretrained("julien-c/EsperBERTo-small-pos")

EsperBERTo: RoBERTa-like Language model trained on Esperanto

Companion model to blog post https://huggingface.co/blog/how-to-train 🔥

Training Details

  • current checkpoint: 566000
  • machine name: galinette

Example pipeline

from transformers import TokenClassificationPipeline, pipeline


MODEL_PATH = "./models/EsperBERTo-small-pos/"

nlp = pipeline(
    "ner",
    model=MODEL_PATH,
    tokenizer=MODEL_PATH,
)
# or instantiate a TokenClassificationPipeline directly.

nlp("Mi estas viro kej estas tago varma.")

# {'entity': 'PRON', 'score': 0.9979867339134216, 'word': ' Mi'}
# {'entity': 'VERB', 'score': 0.9683094620704651, 'word': ' estas'}
# {'entity': 'VERB', 'score': 0.9797462821006775, 'word': ' estas'}
# {'entity': 'NOUN', 'score': 0.8509314060211182, 'word': ' tago'}
# {'entity': 'ADJ', 'score': 0.9996201395988464, 'word': ' varma'}