judithrosell's picture
End of training
ece9bde verified
metadata
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: MatSciBERT_BIOMAT_NER3
    results: []

MatSciBERT_BIOMAT_NER3

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3972
  • Precision: 0.5228
  • Recall: 0.7391
  • F1: 0.6124
  • Accuracy: 0.9437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 422 0.2590 0.4873 0.6950 0.5729 0.9387
0.2326 2.0 844 0.2598 0.5160 0.7084 0.5971 0.9428
0.0654 3.0 1266 0.3152 0.5105 0.6936 0.5881 0.9430
0.0342 4.0 1688 0.3075 0.5214 0.7208 0.6051 0.9432
0.0208 5.0 2110 0.3623 0.5109 0.7370 0.6034 0.9421
0.0126 6.0 2532 0.3504 0.5167 0.7139 0.5995 0.9428
0.0126 7.0 2954 0.3708 0.5260 0.7453 0.6167 0.9445
0.0073 8.0 3376 0.3898 0.5175 0.7294 0.6054 0.9432
0.0058 9.0 3798 0.3917 0.5185 0.7391 0.6094 0.9432
0.0039 10.0 4220 0.3972 0.5228 0.7391 0.6124 0.9437

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1