End of training
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: MatSciBERT_BIOMAT_NER3
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# MatSciBERT_BIOMAT_NER3
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3972
|
24 |
+
- Precision: 0.5228
|
25 |
+
- Recall: 0.7391
|
26 |
+
- F1: 0.6124
|
27 |
+
- Accuracy: 0.9437
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 422 | 0.2590 | 0.4873 | 0.6950 | 0.5729 | 0.9387 |
|
59 |
+
| 0.2326 | 2.0 | 844 | 0.2598 | 0.5160 | 0.7084 | 0.5971 | 0.9428 |
|
60 |
+
| 0.0654 | 3.0 | 1266 | 0.3152 | 0.5105 | 0.6936 | 0.5881 | 0.9430 |
|
61 |
+
| 0.0342 | 4.0 | 1688 | 0.3075 | 0.5214 | 0.7208 | 0.6051 | 0.9432 |
|
62 |
+
| 0.0208 | 5.0 | 2110 | 0.3623 | 0.5109 | 0.7370 | 0.6034 | 0.9421 |
|
63 |
+
| 0.0126 | 6.0 | 2532 | 0.3504 | 0.5167 | 0.7139 | 0.5995 | 0.9428 |
|
64 |
+
| 0.0126 | 7.0 | 2954 | 0.3708 | 0.5260 | 0.7453 | 0.6167 | 0.9445 |
|
65 |
+
| 0.0073 | 8.0 | 3376 | 0.3898 | 0.5175 | 0.7294 | 0.6054 | 0.9432 |
|
66 |
+
| 0.0058 | 9.0 | 3798 | 0.3917 | 0.5185 | 0.7391 | 0.6094 | 0.9432 |
|
67 |
+
| 0.0039 | 10.0 | 4220 | 0.3972 | 0.5228 | 0.7391 | 0.6124 | 0.9437 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.42.4
|
73 |
+
- Pytorch 2.4.0+cu121
|
74 |
+
- Datasets 2.21.0
|
75 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435642228
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca5804b10c264ea3327e3325473142793f4453ec87d4d711701041a5b2453e1f
|
3 |
size 435642228
|
runs/Aug29_23-09-52_589ce4859c78/events.out.tfevents.1724973018.589ce4859c78.964.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f50f1253e279a13165cccb1c1fadb29471e71307e0c8dd060ea4e1ccede739b
|
3 |
+
size 12703
|