Edit model card

BioNLP13CG_ClinicalBERT_NER

This model is a fine-tuned version of medicalai/ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3339

  • Seqeval classification report: precision recall f1-score support

                   Amino_acid       0.81      0.59      0.68       297
            Anatomical_system       0.70      0.78      0.74       297
                       Cancer       0.74      0.73      0.73      3490
                         Cell       0.72      0.87      0.79      1360
           Cellular_component       0.00      0.00      0.00        99
    

Developing_anatomical_structure 0.00 0.00 0.00 11 Gene_or_gene_product 0.67 0.25 0.37 174 Immaterial_anatomical_entity 0.52 0.76 0.62 432 Multi-tissue_structure 0.83 0.59 0.69 317 Organ 0.00 0.00 0.00 49 Organism 0.71 0.48 0.57 464 Organism_subdivision 0.70 0.72 0.71 678 Organism_substance 0.00 0.00 0.00 128 Pathological_formation 0.62 0.05 0.09 108 Simple_chemical 0.00 0.00 0.00 56 Tissue 0.80 0.85 0.82 1566

                  micro avg       0.73      0.71      0.72      9526
                  macro avg       0.49      0.42      0.43      9526
               weighted avg       0.71      0.71      0.70      9526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
No log 0.99 95 0.4681 precision recall f1-score support
                 Amino_acid       1.00      0.02      0.04       297
          Anatomical_system       0.44      0.68      0.54       297
                     Cancer       0.68      0.63      0.65      3490
                       Cell       0.59      0.85      0.70      1360
         Cellular_component       0.00      0.00      0.00        99

Developing_anatomical_structure 0.00 0.00 0.00 11 Gene_or_gene_product 0.00 0.00 0.00 174 Immaterial_anatomical_entity 0.40 0.60 0.48 432 Multi-tissue_structure 0.86 0.06 0.11 317 Organ 0.00 0.00 0.00 49 Organism 0.88 0.02 0.03 464 Organism_subdivision 0.62 0.54 0.58 678 Organism_substance 0.00 0.00 0.00 128 Pathological_formation 0.00 0.00 0.00 108 Simple_chemical 0.00 0.00 0.00 56 Tissue 0.70 0.84 0.76 1566

                  micro avg       0.63      0.58      0.60      9526
                  macro avg       0.39      0.27      0.24      9526
               weighted avg       0.63      0.58      0.55      9526

| | No log | 2.0 | 191 | 0.3526 | precision recall f1-score support

                 Amino_acid       0.81      0.52      0.63       297
          Anatomical_system       0.66      0.77      0.71       297
                     Cancer       0.74      0.73      0.73      3490
                       Cell       0.71      0.87      0.78      1360
         Cellular_component       0.00      0.00      0.00        99

Developing_anatomical_structure 0.00 0.00 0.00 11 Gene_or_gene_product 0.76 0.20 0.32 174 Immaterial_anatomical_entity 0.46 0.76 0.57 432 Multi-tissue_structure 0.83 0.57 0.68 317 Organ 0.00 0.00 0.00 49 Organism 0.68 0.44 0.54 464 Organism_subdivision 0.71 0.67 0.69 678 Organism_substance 0.00 0.00 0.00 128 Pathological_formation 1.00 0.01 0.02 108 Simple_chemical 0.00 0.00 0.00 56 Tissue 0.78 0.85 0.81 1566

                  micro avg       0.72      0.70      0.71      9526
                  macro avg       0.51      0.40      0.41      9526
               weighted avg       0.70      0.70      0.68      9526

| | No log | 2.98 | 285 | 0.3339 | precision recall f1-score support

                 Amino_acid       0.81      0.59      0.68       297
          Anatomical_system       0.70      0.78      0.74       297
                     Cancer       0.74      0.73      0.73      3490
                       Cell       0.72      0.87      0.79      1360
         Cellular_component       0.00      0.00      0.00        99

Developing_anatomical_structure 0.00 0.00 0.00 11 Gene_or_gene_product 0.67 0.25 0.37 174 Immaterial_anatomical_entity 0.52 0.76 0.62 432 Multi-tissue_structure 0.83 0.59 0.69 317 Organ 0.00 0.00 0.00 49 Organism 0.71 0.48 0.57 464 Organism_subdivision 0.70 0.72 0.71 678 Organism_substance 0.00 0.00 0.00 128 Pathological_formation 0.62 0.05 0.09 108 Simple_chemical 0.00 0.00 0.00 56 Tissue 0.80 0.85 0.82 1566

                  micro avg       0.73      0.71      0.72      9526
                  macro avg       0.49      0.42      0.43      9526
               weighted avg       0.71      0.71      0.70      9526

|

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
9
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/BioNLP13CG_ClinicalBERT_NER

Finetuned
(24)
this model