Model Provided by ParmaLLC

The base model is publicly available and free to use for commercial use on HuggingFace:

Quick Start Code (Inside Cloned Repo)

import model
from PIL import Image
import torch


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

file = "./image.png" # input image

model = model.BEN_Base().to(device).eval() #init pipeline

model.loadcheckpoints("./BEN_Base.pth")
image = Image.open(file)
mask, foreground = model.inference(image)

mask.save("./mask.png")
foreground.save("./foreground.png")

BEN SOA Benchmarks on Disk 5k Eval

Demo Results

BEN_Base + BEN_Refiner (commercial model please contact us for more information):

  • MAE: 0.0270
  • DICE: 0.8989
  • IOU: 0.8506
  • BER: 0.0496
  • ACC: 0.9740

BEN_Base (94 million parameters):

  • MAE: 0.0309
  • DICE: 0.8806
  • IOU: 0.8371
  • BER: 0.0516
  • ACC: 0.9718

MVANet (old SOTA):

  • MAE: 0.0353
  • DICE: 0.8676
  • IOU: 0.8104
  • BER: 0.0639
  • ACC: 0.9660

BiRefNet(not tested in house):

  • MAE: 0.038

InSPyReNet (not tested in house):

  • MAE: 0.042

Features

  • Background removal from images
  • Generates both binary mask and foreground image
  • CUDA support for GPU acceleration
  • Simple API for easy integration

Installation

  1. Clone Repo
  2. Install requirements.txt
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support