jtatman's picture
Update README.md
e722b7d verified
---
library_name: transformers
tags:
- function calling
- laser
license: apache-2.0
datasets:
- jtatman/glaive_function_calling_v2_filtered_10k
---
# Model Card
This is a laser fine tuning of Aloobun's [great 1.5b param reyna mini model](https://huggingface.co/aloobun/Reyna-Mini-1.8B-v0.2).
### Model Description
This model is quite conversational - even a bit more so after laser tuning even using Peft. The function calling is mediocre, but will be improved in future versions.
## Uses
As Aloobun's model is well performing and impressive on it's own, I decided to add some function calling while practicing the LaserRMT technique.
### Direct Use
- Chat
- Conversational
- Text Generation
- Function Calling
## Bias, Risks, and Limitations
This model will take over your house, borrow your car, talk badly to your family, and generally make everything incrementally worse. If you use it for nefarious purposes.
### Recommendations
Use at your own risk. It's a great small model, owing to the base model before tuning.
## Training Details
### Training Data
- "eval/loss": 2.1797242164611816,
- "_timestamp": 1708624900.2239263,
- "_runtime": 20945.370138406754,
- "train/train_loss": 2.515587423102269,
- "train/global_step": 918,
- "train/train_steps_per_second": 0.044,
- "train/loss": 2.2062,
- "train/learning_rate": 0,
- "train/train_samples_per_second": 1.403,
- "train/train_runtime": 20945.6359,
- "eval/steps_per_second": 4.867,
- "eval/samples_per_second": 4.867,
- "_step": 923,
- "train/epoch": 2.98,
- "eval/runtime": 41.0972,
- "train/grad_norm": 0.2638521194458008,
- "train/total_flos": 141790931224363000
### Training Procedure
[LaserRMT](https://github.com/cognitivecomputations/laserRMT) was used to refine the weights, using the 16 highest scored weights specifically by noise-to-ratio analysis.
This technique avoids training unnecessarily low-performng weights that can turn to garbage. By pruning these weights, the model size is decreased slightly.
![axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/image/axolotl-badge-web.png?raw=true)
Axolotl was used for training and dataset tokenization.
#### Preprocessing
Dataset was formatted in ShareGpt format for the purposes of using with Axolotl, in conversational format.
#### Training Hyperparameters
- lora_r: 64
- lora_alpha: 16
- lora_dropout: 0.05
- gradient_accumulation_steps: 4
- micro_batch_size: 1
- num_epochs: 3
- optimizer: adamw_bnb_8bit
- lr_scheduler: cosine
- learning_rate: 0.00025
#### Evaluation
| Groups |Version| Filter |n-shot| Metric | Value | |Stderr|
|--------------------|-------|----------------|-----:|-----------|------:|---|-----:|
|Open LLM Leaderboard|N/A |none | 5|rouge2_acc | 0.1920|± |0.0176|
| | |none | 5|bleu_max |15.2292|± |0.6714|
| | |flexible-extract| 5|exact_match| 0.0220|± |0.0066|
| - truthfulqa_mc1 | 2|none | 0|acc | 0.2440|± |0.0192|
| - truthfulqa_mc2 | 2|none | 0|acc | 0.4430|± |0.0195|
| - winogrande | 1|none | 5|acc | 0.5120|± |0.0224|
| - arc_challenge | 1|none | 25|acc | 0.1760|± |0.0170|
| | |none | 25|acc_norm | 0.2320|± |0.0189|
| - gsm8k | 3|strict-match | 5|exact_match| 0.0060|± |0.0035|
| | |flexible-extract| 5|exact_match| 0.0220|± |0.0066|
| - hellaswag | 1|none | 10|acc | 0.3520|± |0.0214|
| | |none | 10|acc_norm | 0.4040|± |0.0220|
| | |none | 5|rouge2_diff|-3.3178|± |0.9477|
| | |none | 5|rougeL_acc | 0.3860|± |0.0218|
| | |none | 5|acc_norm | 0.3180|± |0.0145|
| | |none | 5|rouge1_diff|-1.5564|± |1.0223|
| | |none | 5|bleu_diff |-0.6500|± |0.6421|
| | |none | 5|rouge2_max |16.4873|± |1.0172|
| | |none | 5|rougeL_diff|-0.7765|± |1.0034|
| | |strict-match | 5|exact_match| 0.0060|± |0.0035|
| | |none | 5|bleu_acc | 0.4360|± |0.0222|
| | |none | 5|rougeL_max |33.8798|± |0.9367|
| | |none | 5|rouge1_max |36.3550|± |0.9462|
| | |none | 5|rouge1_acc | 0.3700|± |0.0216|
| | |none | 5|acc | 0.2664|± |0.0036|
| - mmlu |N/A |none | 0|acc | 0.2533|± |0.0039|
| - humanities |N/A |none | 5|acc | 0.2408|± |0.0075|
| - other |N/A |none | 5|acc | 0.2443|± |0.0080|
| - social_sciences |N/A |none | 5|acc | 0.2538|± |0.0081|
| - stem |N/A |none | 5|acc | 0.2740|± |0.0079|
| - truthfulqa |N/A |none | 0|rouge2_acc | 0.1920|± |0.0176|
| | |none | 0|rougeL_diff|-0.7765|± |1.0034|
| | |none | 0|bleu_max |15.2292|± |0.6714|
| | |none | 0|rouge2_diff|-3.3178|± |0.9477|
| | |none | 0|rougeL_acc | 0.3860|± |0.0218|
| | |none | 0|bleu_diff |-0.6500|± |0.6421|
| | |none | 0|rouge2_max |16.4873|± |1.0172|
| | |none | 0|rouge1_diff|-1.5564|± |1.0223|
| | |none | 0|acc | 0.3435|± |0.0137|
| | |none | 0|bleu_acc | 0.4360|± |0.0222|
| | |none | 0|rougeL_max |33.8798|± |0.9367|
| | |none | 0|rouge1_max |36.3550|± |0.9462|
| | |none | 0|rouge1_acc | 0.3700|± |0.0216|