File size: 6,458 Bytes
8d27866
 
0d2f3ab
 
 
 
 
 
8d27866
 
0d2f3ab
8d27866
0d2f3ab
8d27866
 
 
0d2f3ab
8d27866
 
 
0d2f3ab
8d27866
 
 
2de4cf0
 
 
 
8d27866
 
 
0d2f3ab
8d27866
 
 
0d2f3ab
8d27866
 
 
 
 
8976355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d27866
 
 
0d2f3ab
2de4cf0
0d2f3ab
8d27866
0d2f3ab
2de4cf0
0d2f3ab
8d27866
2608579
8d27866
0d2f3ab
8d27866
 
 
2608579
 
 
 
 
 
 
 
e722b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
library_name: transformers
tags:
- function calling
- laser
license: apache-2.0
datasets:
- jtatman/glaive_function_calling_v2_filtered_10k
---

# Model Card

This is a laser fine tuning of Aloobun's [great 1.5b param reyna mini model](https://huggingface.co/aloobun/Reyna-Mini-1.8B-v0.2). 

### Model Description

This model is quite conversational - even a bit more so after laser tuning even using Peft. The function calling is mediocre, but will be improved in future versions.

## Uses

As Aloobun's model is well performing and impressive on it's own, I decided to add some function calling while practicing the LaserRMT technique.

### Direct Use

- Chat
- Conversational
- Text Generation
- Function Calling 

## Bias, Risks, and Limitations

This model will take over your house, borrow your car, talk badly to your family, and generally make everything incrementally worse. If you use it for nefarious purposes.

### Recommendations

Use at your own risk. It's a great small model, owing to the base model before tuning. 

## Training Details

### Training Data


- "eval/loss": 2.1797242164611816,
- "_timestamp": 1708624900.2239263,
- "_runtime": 20945.370138406754,
- "train/train_loss": 2.515587423102269,
- "train/global_step": 918,
- "train/train_steps_per_second": 0.044,
- "train/loss": 2.2062,
- "train/learning_rate": 0,
- "train/train_samples_per_second": 1.403,
- "train/train_runtime": 20945.6359,
- "eval/steps_per_second": 4.867,
- "eval/samples_per_second": 4.867,
- "_step": 923,
- "train/epoch": 2.98,
- "eval/runtime": 41.0972,
- "train/grad_norm": 0.2638521194458008,
- "train/total_flos": 141790931224363000


### Training Procedure 

[LaserRMT](https://github.com/cognitivecomputations/laserRMT) was used to refine the weights, using the 16 highest scored weights specifically by noise-to-ratio analysis.

This technique avoids training unnecessarily low-performng weights that can turn to garbage. By pruning these weights, the model size is decreased slightly.

![axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/image/axolotl-badge-web.png?raw=true)

Axolotl was used for training and dataset tokenization. 

#### Preprocessing 

Dataset was formatted in ShareGpt format for the purposes of using with Axolotl, in conversational format.

#### Training Hyperparameters

- lora_r: 64
- lora_alpha: 16
- lora_dropout: 0.05
- gradient_accumulation_steps: 4
- micro_batch_size: 1
- num_epochs: 3
- optimizer: adamw_bnb_8bit
- lr_scheduler: cosine
- learning_rate: 0.00025

#### Evaluation

|       Groups       |Version|     Filter     |n-shot|  Metric   | Value |   |Stderr|
|--------------------|-------|----------------|-----:|-----------|------:|---|-----:|
|Open LLM Leaderboard|N/A    |none            |     5|rouge2_acc | 0.1920|±  |0.0176|
|                    |       |none            |     5|bleu_max   |15.2292|±  |0.6714|
|                    |       |flexible-extract|     5|exact_match| 0.0220|±  |0.0066|
| - truthfulqa_mc1   |      2|none            |     0|acc        | 0.2440|±  |0.0192|
| - truthfulqa_mc2   |      2|none            |     0|acc        | 0.4430|±  |0.0195|
| - winogrande       |      1|none            |     5|acc        | 0.5120|±  |0.0224|
| - arc_challenge    |      1|none            |    25|acc        | 0.1760|±  |0.0170|
|                    |       |none            |    25|acc_norm   | 0.2320|±  |0.0189|
| - gsm8k            |      3|strict-match    |     5|exact_match| 0.0060|±  |0.0035|
|                    |       |flexible-extract|     5|exact_match| 0.0220|±  |0.0066|
| - hellaswag        |      1|none            |    10|acc        | 0.3520|±  |0.0214|
|                    |       |none            |    10|acc_norm   | 0.4040|±  |0.0220|
|                    |       |none            |     5|rouge2_diff|-3.3178|±  |0.9477|
|                    |       |none            |     5|rougeL_acc | 0.3860|±  |0.0218|
|                    |       |none            |     5|acc_norm   | 0.3180|±  |0.0145|
|                    |       |none            |     5|rouge1_diff|-1.5564|±  |1.0223|
|                    |       |none            |     5|bleu_diff  |-0.6500|±  |0.6421|
|                    |       |none            |     5|rouge2_max |16.4873|±  |1.0172|
|                    |       |none            |     5|rougeL_diff|-0.7765|±  |1.0034|
|                    |       |strict-match    |     5|exact_match| 0.0060|±  |0.0035|
|                    |       |none            |     5|bleu_acc   | 0.4360|±  |0.0222|
|                    |       |none            |     5|rougeL_max |33.8798|±  |0.9367|
|                    |       |none            |     5|rouge1_max |36.3550|±  |0.9462|
|                    |       |none            |     5|rouge1_acc | 0.3700|±  |0.0216|
|                    |       |none            |     5|acc        | 0.2664|±  |0.0036|
| - mmlu             |N/A    |none            |     0|acc        | 0.2533|±  |0.0039|
|  - humanities      |N/A    |none            |     5|acc        | 0.2408|±  |0.0075|
|  - other           |N/A    |none            |     5|acc        | 0.2443|±  |0.0080|
|  - social_sciences |N/A    |none            |     5|acc        | 0.2538|±  |0.0081|
|  - stem            |N/A    |none            |     5|acc        | 0.2740|±  |0.0079|
| - truthfulqa       |N/A    |none            |     0|rouge2_acc | 0.1920|±  |0.0176|
|                    |       |none            |     0|rougeL_diff|-0.7765|±  |1.0034|
|                    |       |none            |     0|bleu_max   |15.2292|±  |0.6714|
|                    |       |none            |     0|rouge2_diff|-3.3178|±  |0.9477|
|                    |       |none            |     0|rougeL_acc | 0.3860|±  |0.0218|
|                    |       |none            |     0|bleu_diff  |-0.6500|±  |0.6421|
|                    |       |none            |     0|rouge2_max |16.4873|±  |1.0172|
|                    |       |none            |     0|rouge1_diff|-1.5564|±  |1.0223|
|                    |       |none            |     0|acc        | 0.3435|±  |0.0137|
|                    |       |none            |     0|bleu_acc   | 0.4360|±  |0.0222|
|                    |       |none            |     0|rougeL_max |33.8798|±  |0.9367|
|                    |       |none            |     0|rouge1_max |36.3550|±  |0.9462|
|                    |       |none            |     0|rouge1_acc | 0.3700|±  |0.0216|