File size: 2,454 Bytes
127d9df
 
1499fba
127d9df
 
 
 
f9fecdd
 
127d9df
 
f9fecdd
 
 
 
 
 
 
 
 
 
 
 
 
f56acb3
127d9df
 
 
 
 
 
 
1499fba
f9fecdd
f56acb3
 
127d9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c50c9b2
 
127d9df
 
c50c9b2
127d9df
 
 
5250224
127d9df
f9fecdd
 
c50c9b2
 
5250224
 
 
 
 
 
 
 
 
 
f9fecdd
 
127d9df
 
e666c54
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9879154078549849
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0367
- Accuracy: 0.9879

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.1993        | 0.9904 | 77   | 0.0961          | 0.9617   |
| 0.1729        | 1.9936 | 155  | 0.1151          | 0.9486   |
| 0.1509        | 2.9968 | 233  | 0.0603          | 0.9748   |
| 0.1081        | 4.0    | 311  | 0.0367          | 0.9879   |
| 0.1195        | 4.9904 | 388  | 0.0936          | 0.9627   |
| 0.0674        | 5.9936 | 466  | 0.0370          | 0.9849   |
| 0.0629        | 6.9968 | 544  | 0.0400          | 0.9839   |
| 0.0718        | 8.0    | 622  | 0.0496          | 0.9839   |
| 0.0335        | 8.9904 | 699  | 0.0533          | 0.9819   |
| 0.0843        | 9.9035 | 770  | 0.0550          | 0.9809   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1