julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
d5792d2
|
raw
history blame
17.5 kB
---
language: multilingual
---
# XLM-R + NER
This model is a fine-tuned [XLM-Roberta-base](https://arxiv.org/abs/1911.02116) over the 40 languages proposed in [XTREME](https://github.com/google-research/xtreme) from [Wikiann](https://aclweb.org/anthology/P17-1178). This is still an on-going work and the results will be updated everytime an improvement is reached.
The covered labels are:
```
LOC
ORG
PER
O
```
## Metrics on evaluation set:
### Average over the 40 languages
Number of documents: 262300
```
precision recall f1-score support
ORG 0.81 0.81 0.81 102452
PER 0.90 0.91 0.91 108978
LOC 0.86 0.89 0.87 121868
micro avg 0.86 0.87 0.87 333298
macro avg 0.86 0.87 0.87 333298
```
### Afrikaans
Number of documents: 1000
```
precision recall f1-score support
ORG 0.89 0.88 0.88 582
PER 0.89 0.97 0.93 369
LOC 0.84 0.90 0.86 518
micro avg 0.87 0.91 0.89 1469
macro avg 0.87 0.91 0.89 1469
```
### Arabic
Number of documents: 10000
```
precision recall f1-score support
ORG 0.83 0.84 0.84 3507
PER 0.90 0.91 0.91 3643
LOC 0.88 0.89 0.88 3604
micro avg 0.87 0.88 0.88 10754
macro avg 0.87 0.88 0.88 10754
```
### Basque
Number of documents: 10000
```
precision recall f1-score support
LOC 0.88 0.93 0.91 5228
ORG 0.86 0.81 0.83 3654
PER 0.91 0.91 0.91 4072
micro avg 0.89 0.89 0.89 12954
macro avg 0.89 0.89 0.89 12954
```
### Bengali
Number of documents: 1000
```
precision recall f1-score support
ORG 0.86 0.89 0.87 325
LOC 0.91 0.91 0.91 406
PER 0.96 0.95 0.95 364
micro avg 0.91 0.92 0.91 1095
macro avg 0.91 0.92 0.91 1095
```
### Bulgarian
Number of documents: 1000
```
precision recall f1-score support
ORG 0.86 0.83 0.84 3661
PER 0.92 0.95 0.94 4006
LOC 0.92 0.95 0.94 6449
micro avg 0.91 0.92 0.91 14116
macro avg 0.91 0.92 0.91 14116
```
### Burmese
Number of documents: 100
```
precision recall f1-score support
LOC 0.60 0.86 0.71 37
ORG 0.68 0.63 0.66 30
PER 0.44 0.44 0.44 36
micro avg 0.57 0.65 0.61 103
macro avg 0.57 0.65 0.60 103
```
### Chinese
Number of documents: 10000
```
precision recall f1-score support
ORG 0.70 0.69 0.70 4022
LOC 0.76 0.81 0.78 3830
PER 0.84 0.84 0.84 3706
micro avg 0.76 0.78 0.77 11558
macro avg 0.76 0.78 0.77 11558
```
### Dutch
Number of documents: 10000
```
precision recall f1-score support
ORG 0.87 0.87 0.87 3930
PER 0.95 0.95 0.95 4377
LOC 0.91 0.92 0.91 4813
micro avg 0.91 0.92 0.91 13120
macro avg 0.91 0.92 0.91 13120
```
### English
Number of documents: 10000
```
precision recall f1-score support
LOC 0.83 0.84 0.84 4781
PER 0.89 0.90 0.89 4559
ORG 0.75 0.75 0.75 4633
micro avg 0.82 0.83 0.83 13973
macro avg 0.82 0.83 0.83 13973
```
### Estonian
Number of documents: 10000
```
precision recall f1-score support
LOC 0.89 0.92 0.91 5654
ORG 0.85 0.85 0.85 3878
PER 0.94 0.94 0.94 4026
micro avg 0.90 0.91 0.90 13558
macro avg 0.90 0.91 0.90 13558
```
### Finnish
Number of documents: 10000
```
precision recall f1-score support
ORG 0.84 0.83 0.84 4104
LOC 0.88 0.90 0.89 5307
PER 0.95 0.94 0.94 4519
micro avg 0.89 0.89 0.89 13930
macro avg 0.89 0.89 0.89 13930
```
### French
Number of documents: 10000
```
precision recall f1-score support
LOC 0.90 0.89 0.89 4808
ORG 0.84 0.87 0.85 3876
PER 0.94 0.93 0.94 4249
micro avg 0.89 0.90 0.90 12933
macro avg 0.89 0.90 0.90 12933
```
### Georgian
Number of documents: 10000
```
precision recall f1-score support
PER 0.90 0.91 0.90 3964
ORG 0.83 0.77 0.80 3757
LOC 0.82 0.88 0.85 4894
micro avg 0.84 0.86 0.85 12615
macro avg 0.84 0.86 0.85 12615
```
### German
Number of documents: 10000
```
precision recall f1-score support
LOC 0.85 0.90 0.87 4939
PER 0.94 0.91 0.92 4452
ORG 0.79 0.78 0.79 4247
micro avg 0.86 0.86 0.86 13638
macro avg 0.86 0.86 0.86 13638
```
### Greek
Number of documents: 10000
```
precision recall f1-score support
ORG 0.86 0.85 0.85 3771
LOC 0.88 0.91 0.90 4436
PER 0.91 0.93 0.92 3894
micro avg 0.88 0.90 0.89 12101
macro avg 0.88 0.90 0.89 12101
```
### Hebrew
Number of documents: 10000
```
precision recall f1-score support
PER 0.87 0.88 0.87 4206
ORG 0.76 0.75 0.76 4190
LOC 0.85 0.85 0.85 4538
micro avg 0.83 0.83 0.83 12934
macro avg 0.82 0.83 0.83 12934
```
### Hindi
Number of documents: 1000
```
precision recall f1-score support
ORG 0.78 0.81 0.79 362
LOC 0.83 0.85 0.84 422
PER 0.90 0.95 0.92 427
micro avg 0.84 0.87 0.85 1211
macro avg 0.84 0.87 0.85 1211
```
### Hungarian
Number of documents: 10000
```
precision recall f1-score support
PER 0.95 0.95 0.95 4347
ORG 0.87 0.88 0.87 3988
LOC 0.90 0.92 0.91 5544
micro avg 0.91 0.92 0.91 13879
macro avg 0.91 0.92 0.91 13879
```
### Indonesian
Number of documents: 10000
```
precision recall f1-score support
ORG 0.88 0.89 0.88 3735
LOC 0.93 0.95 0.94 3694
PER 0.93 0.93 0.93 3947
micro avg 0.91 0.92 0.92 11376
macro avg 0.91 0.92 0.92 11376
```
### Italian
Number of documents: 10000
```
precision recall f1-score support
LOC 0.88 0.88 0.88 4592
ORG 0.86 0.86 0.86 4088
PER 0.96 0.96 0.96 4732
micro avg 0.90 0.90 0.90 13412
macro avg 0.90 0.90 0.90 13412
```
### Japanese
Number of documents: 10000
```
precision recall f1-score support
ORG 0.62 0.61 0.62 4184
PER 0.76 0.81 0.78 3812
LOC 0.68 0.74 0.71 4281
micro avg 0.69 0.72 0.70 12277
macro avg 0.69 0.72 0.70 12277
```
### Javanese
Number of documents: 100
```
precision recall f1-score support
ORG 0.79 0.80 0.80 46
PER 0.81 0.96 0.88 26
LOC 0.75 0.75 0.75 40
micro avg 0.78 0.82 0.80 112
macro avg 0.78 0.82 0.80 112
```
### Kazakh
Number of documents: 1000
```
precision recall f1-score support
ORG 0.76 0.61 0.68 307
LOC 0.78 0.90 0.84 461
PER 0.87 0.91 0.89 367
micro avg 0.81 0.83 0.82 1135
macro avg 0.81 0.83 0.81 1135
```
### Korean
Number of documents: 10000
```
precision recall f1-score support
LOC 0.86 0.89 0.88 5097
ORG 0.79 0.74 0.77 4218
PER 0.83 0.86 0.84 4014
micro avg 0.83 0.83 0.83 13329
macro avg 0.83 0.83 0.83 13329
```
### Malay
Number of documents: 1000
```
precision recall f1-score support
ORG 0.87 0.89 0.88 368
PER 0.92 0.91 0.91 366
LOC 0.94 0.95 0.95 354
micro avg 0.91 0.92 0.91 1088
macro avg 0.91 0.92 0.91 1088
```
### Malayalam
Number of documents: 1000
```
precision recall f1-score support
ORG 0.75 0.74 0.75 347
PER 0.84 0.89 0.86 417
LOC 0.74 0.75 0.75 391
micro avg 0.78 0.80 0.79 1155
macro avg 0.78 0.80 0.79 1155
```
### Marathi
Number of documents: 1000
```
precision recall f1-score support
PER 0.89 0.94 0.92 394
LOC 0.82 0.84 0.83 457
ORG 0.84 0.78 0.81 339
micro avg 0.85 0.86 0.85 1190
macro avg 0.85 0.86 0.85 1190
```
### Persian
Number of documents: 10000
```
precision recall f1-score support
PER 0.93 0.92 0.93 3540
LOC 0.93 0.93 0.93 3584
ORG 0.89 0.92 0.90 3370
micro avg 0.92 0.92 0.92 10494
macro avg 0.92 0.92 0.92 10494
```
### Portuguese
Number of documents: 10000
```
precision recall f1-score support
LOC 0.90 0.91 0.91 4819
PER 0.94 0.92 0.93 4184
ORG 0.84 0.88 0.86 3670
micro avg 0.89 0.91 0.90 12673
macro avg 0.90 0.91 0.90 12673
```
### Russian
Number of documents: 10000
```
precision recall f1-score support
PER 0.93 0.96 0.95 3574
LOC 0.87 0.89 0.88 4619
ORG 0.82 0.80 0.81 3858
micro avg 0.87 0.88 0.88 12051
macro avg 0.87 0.88 0.88 12051
```
### Spanish
Number of documents: 10000
```
precision recall f1-score support
PER 0.95 0.93 0.94 3891
ORG 0.86 0.88 0.87 3709
LOC 0.89 0.91 0.90 4553
micro avg 0.90 0.91 0.90 12153
macro avg 0.90 0.91 0.90 12153
```
### Swahili
Number of documents: 1000
```
precision recall f1-score support
ORG 0.82 0.85 0.83 349
PER 0.95 0.92 0.94 403
LOC 0.86 0.89 0.88 450
micro avg 0.88 0.89 0.88 1202
macro avg 0.88 0.89 0.88 1202
```
### Tagalog
Number of documents: 1000
```
precision recall f1-score support
LOC 0.90 0.91 0.90 338
ORG 0.83 0.91 0.87 339
PER 0.96 0.93 0.95 350
micro avg 0.90 0.92 0.91 1027
macro avg 0.90 0.92 0.91 1027
```
### Tamil
Number of documents: 1000
```
precision recall f1-score support
PER 0.90 0.92 0.91 392
ORG 0.77 0.76 0.76 370
LOC 0.78 0.81 0.79 421
micro avg 0.82 0.83 0.82 1183
macro avg 0.82 0.83 0.82 1183
```
### Telugu
Number of documents: 1000
```
precision recall f1-score support
ORG 0.67 0.55 0.61 347
LOC 0.78 0.87 0.82 453
PER 0.73 0.86 0.79 393
micro avg 0.74 0.77 0.76 1193
macro avg 0.73 0.77 0.75 1193
```
### Thai
Number of documents: 10000
```
precision recall f1-score support
LOC 0.63 0.76 0.69 3928
PER 0.78 0.83 0.80 6537
ORG 0.59 0.59 0.59 4257
micro avg 0.68 0.74 0.71 14722
macro avg 0.68 0.74 0.71 14722
```
### Turkish
Number of documents: 10000
```
precision recall f1-score support
PER 0.94 0.94 0.94 4337
ORG 0.88 0.89 0.88 4094
LOC 0.90 0.92 0.91 4929
micro avg 0.90 0.92 0.91 13360
macro avg 0.91 0.92 0.91 13360
```
### Urdu
Number of documents: 1000
```
precision recall f1-score support
LOC 0.90 0.95 0.93 352
PER 0.96 0.96 0.96 333
ORG 0.91 0.90 0.90 326
micro avg 0.92 0.94 0.93 1011
macro avg 0.92 0.94 0.93 1011
```
### Vietnamese
Number of documents: 10000
```
precision recall f1-score support
ORG 0.86 0.87 0.86 3579
LOC 0.88 0.91 0.90 3811
PER 0.92 0.93 0.93 3717
micro avg 0.89 0.90 0.90 11107
macro avg 0.89 0.90 0.90 11107
```
### Yoruba
Number of documents: 100
```
precision recall f1-score support
LOC 0.54 0.72 0.62 36
ORG 0.58 0.31 0.41 35
PER 0.77 1.00 0.87 36
micro avg 0.64 0.68 0.66 107
macro avg 0.63 0.68 0.63 107
```
## Reproduce the results
Download and prepare the dataset from the [XTREME repo](https://github.com/google-research/xtreme#download-the-data). Next, from the root of the transformers repo run:
```
cd examples/ner
python run_tf_ner.py \
--data_dir . \
--labels ./labels.txt \
--model_name_or_path jplu/tf-xlm-roberta-base \
--output_dir model \
--max-seq-length 128 \
--num_train_epochs 2 \
--per_gpu_train_batch_size 16 \
--per_gpu_eval_batch_size 32 \
--do_train \
--do_eval \
--logging_dir logs \
--mode token-classification \
--evaluate_during_training \
--optimizer_name adamw
```
## Usage with pipelines
```python
from transformers import pipeline
nlp_ner = pipeline(
"ner",
model="jplu/tf-xlm-r-ner-40-lang",
tokenizer=(
'jplu/tf-xlm-r-ner-40-lang',
{"use_fast": True}),
framework="tf"
)
text_fr = "Barack Obama est né à Hawaï."
text_en = "Barack Obama was born in Hawaii."
text_es = "Barack Obama nació en Hawai."
text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。"
text_ar = "ولد باراك أوباما في هاواي."
nlp_ner(text_fr)
#Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}]
nlp_ner(text_en)
#Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}]
nlp_ner(test_es)
#Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}]
nlp_ner(test_zh)
#Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}]
nlp_ner(test_ar)
#Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}]
```