julien-c HF staff commited on
Commit
d5792d2
·
1 Parent(s): bbb7afb

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/jplu/tf-xlm-r-ner-40-lang/README.md

Files changed (1) hide show
  1. README.md +602 -0
README.md ADDED
@@ -0,0 +1,602 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: multilingual
3
+ ---
4
+
5
+ # XLM-R + NER
6
+
7
+ This model is a fine-tuned [XLM-Roberta-base](https://arxiv.org/abs/1911.02116) over the 40 languages proposed in [XTREME](https://github.com/google-research/xtreme) from [Wikiann](https://aclweb.org/anthology/P17-1178). This is still an on-going work and the results will be updated everytime an improvement is reached.
8
+
9
+ The covered labels are:
10
+ ```
11
+ LOC
12
+ ORG
13
+ PER
14
+ O
15
+ ```
16
+
17
+ ## Metrics on evaluation set:
18
+ ### Average over the 40 languages
19
+ Number of documents: 262300
20
+ ```
21
+ precision recall f1-score support
22
+
23
+ ORG 0.81 0.81 0.81 102452
24
+ PER 0.90 0.91 0.91 108978
25
+ LOC 0.86 0.89 0.87 121868
26
+
27
+ micro avg 0.86 0.87 0.87 333298
28
+ macro avg 0.86 0.87 0.87 333298
29
+ ```
30
+
31
+ ### Afrikaans
32
+ Number of documents: 1000
33
+ ```
34
+ precision recall f1-score support
35
+
36
+ ORG 0.89 0.88 0.88 582
37
+ PER 0.89 0.97 0.93 369
38
+ LOC 0.84 0.90 0.86 518
39
+
40
+ micro avg 0.87 0.91 0.89 1469
41
+ macro avg 0.87 0.91 0.89 1469
42
+ ```
43
+
44
+ ### Arabic
45
+ Number of documents: 10000
46
+ ```
47
+ precision recall f1-score support
48
+
49
+ ORG 0.83 0.84 0.84 3507
50
+ PER 0.90 0.91 0.91 3643
51
+ LOC 0.88 0.89 0.88 3604
52
+
53
+ micro avg 0.87 0.88 0.88 10754
54
+ macro avg 0.87 0.88 0.88 10754
55
+ ```
56
+
57
+ ### Basque
58
+ Number of documents: 10000
59
+ ```
60
+ precision recall f1-score support
61
+
62
+ LOC 0.88 0.93 0.91 5228
63
+ ORG 0.86 0.81 0.83 3654
64
+ PER 0.91 0.91 0.91 4072
65
+
66
+ micro avg 0.89 0.89 0.89 12954
67
+ macro avg 0.89 0.89 0.89 12954
68
+ ```
69
+
70
+ ### Bengali
71
+ Number of documents: 1000
72
+ ```
73
+ precision recall f1-score support
74
+
75
+ ORG 0.86 0.89 0.87 325
76
+ LOC 0.91 0.91 0.91 406
77
+ PER 0.96 0.95 0.95 364
78
+
79
+ micro avg 0.91 0.92 0.91 1095
80
+ macro avg 0.91 0.92 0.91 1095
81
+ ```
82
+
83
+ ### Bulgarian
84
+ Number of documents: 1000
85
+ ```
86
+ precision recall f1-score support
87
+
88
+ ORG 0.86 0.83 0.84 3661
89
+ PER 0.92 0.95 0.94 4006
90
+ LOC 0.92 0.95 0.94 6449
91
+
92
+ micro avg 0.91 0.92 0.91 14116
93
+ macro avg 0.91 0.92 0.91 14116
94
+ ```
95
+
96
+ ### Burmese
97
+ Number of documents: 100
98
+ ```
99
+ precision recall f1-score support
100
+
101
+ LOC 0.60 0.86 0.71 37
102
+ ORG 0.68 0.63 0.66 30
103
+ PER 0.44 0.44 0.44 36
104
+
105
+ micro avg 0.57 0.65 0.61 103
106
+ macro avg 0.57 0.65 0.60 103
107
+ ```
108
+
109
+ ### Chinese
110
+ Number of documents: 10000
111
+ ```
112
+ precision recall f1-score support
113
+
114
+ ORG 0.70 0.69 0.70 4022
115
+ LOC 0.76 0.81 0.78 3830
116
+ PER 0.84 0.84 0.84 3706
117
+
118
+ micro avg 0.76 0.78 0.77 11558
119
+ macro avg 0.76 0.78 0.77 11558
120
+ ```
121
+
122
+ ### Dutch
123
+ Number of documents: 10000
124
+ ```
125
+ precision recall f1-score support
126
+
127
+ ORG 0.87 0.87 0.87 3930
128
+ PER 0.95 0.95 0.95 4377
129
+ LOC 0.91 0.92 0.91 4813
130
+
131
+ micro avg 0.91 0.92 0.91 13120
132
+ macro avg 0.91 0.92 0.91 13120
133
+ ```
134
+
135
+ ### English
136
+ Number of documents: 10000
137
+ ```
138
+ precision recall f1-score support
139
+
140
+ LOC 0.83 0.84 0.84 4781
141
+ PER 0.89 0.90 0.89 4559
142
+ ORG 0.75 0.75 0.75 4633
143
+
144
+ micro avg 0.82 0.83 0.83 13973
145
+ macro avg 0.82 0.83 0.83 13973
146
+ ```
147
+
148
+ ### Estonian
149
+ Number of documents: 10000
150
+ ```
151
+ precision recall f1-score support
152
+
153
+ LOC 0.89 0.92 0.91 5654
154
+ ORG 0.85 0.85 0.85 3878
155
+ PER 0.94 0.94 0.94 4026
156
+
157
+ micro avg 0.90 0.91 0.90 13558
158
+ macro avg 0.90 0.91 0.90 13558
159
+ ```
160
+
161
+ ### Finnish
162
+ Number of documents: 10000
163
+ ```
164
+ precision recall f1-score support
165
+
166
+ ORG 0.84 0.83 0.84 4104
167
+ LOC 0.88 0.90 0.89 5307
168
+ PER 0.95 0.94 0.94 4519
169
+
170
+ micro avg 0.89 0.89 0.89 13930
171
+ macro avg 0.89 0.89 0.89 13930
172
+ ```
173
+
174
+ ### French
175
+ Number of documents: 10000
176
+ ```
177
+ precision recall f1-score support
178
+
179
+ LOC 0.90 0.89 0.89 4808
180
+ ORG 0.84 0.87 0.85 3876
181
+ PER 0.94 0.93 0.94 4249
182
+
183
+ micro avg 0.89 0.90 0.90 12933
184
+ macro avg 0.89 0.90 0.90 12933
185
+ ```
186
+
187
+ ### Georgian
188
+ Number of documents: 10000
189
+ ```
190
+ precision recall f1-score support
191
+
192
+ PER 0.90 0.91 0.90 3964
193
+ ORG 0.83 0.77 0.80 3757
194
+ LOC 0.82 0.88 0.85 4894
195
+
196
+ micro avg 0.84 0.86 0.85 12615
197
+ macro avg 0.84 0.86 0.85 12615
198
+ ```
199
+
200
+ ### German
201
+ Number of documents: 10000
202
+ ```
203
+ precision recall f1-score support
204
+
205
+ LOC 0.85 0.90 0.87 4939
206
+ PER 0.94 0.91 0.92 4452
207
+ ORG 0.79 0.78 0.79 4247
208
+
209
+ micro avg 0.86 0.86 0.86 13638
210
+ macro avg 0.86 0.86 0.86 13638
211
+ ```
212
+
213
+ ### Greek
214
+ Number of documents: 10000
215
+ ```
216
+ precision recall f1-score support
217
+
218
+ ORG 0.86 0.85 0.85 3771
219
+ LOC 0.88 0.91 0.90 4436
220
+ PER 0.91 0.93 0.92 3894
221
+
222
+ micro avg 0.88 0.90 0.89 12101
223
+ macro avg 0.88 0.90 0.89 12101
224
+ ```
225
+
226
+ ### Hebrew
227
+ Number of documents: 10000
228
+ ```
229
+ precision recall f1-score support
230
+
231
+ PER 0.87 0.88 0.87 4206
232
+ ORG 0.76 0.75 0.76 4190
233
+ LOC 0.85 0.85 0.85 4538
234
+
235
+ micro avg 0.83 0.83 0.83 12934
236
+ macro avg 0.82 0.83 0.83 12934
237
+ ```
238
+
239
+ ### Hindi
240
+ Number of documents: 1000
241
+ ```
242
+ precision recall f1-score support
243
+
244
+ ORG 0.78 0.81 0.79 362
245
+ LOC 0.83 0.85 0.84 422
246
+ PER 0.90 0.95 0.92 427
247
+
248
+ micro avg 0.84 0.87 0.85 1211
249
+ macro avg 0.84 0.87 0.85 1211
250
+ ```
251
+
252
+ ### Hungarian
253
+ Number of documents: 10000
254
+ ```
255
+ precision recall f1-score support
256
+
257
+ PER 0.95 0.95 0.95 4347
258
+ ORG 0.87 0.88 0.87 3988
259
+ LOC 0.90 0.92 0.91 5544
260
+
261
+ micro avg 0.91 0.92 0.91 13879
262
+ macro avg 0.91 0.92 0.91 13879
263
+ ```
264
+
265
+ ### Indonesian
266
+ Number of documents: 10000
267
+ ```
268
+ precision recall f1-score support
269
+
270
+ ORG 0.88 0.89 0.88 3735
271
+ LOC 0.93 0.95 0.94 3694
272
+ PER 0.93 0.93 0.93 3947
273
+
274
+ micro avg 0.91 0.92 0.92 11376
275
+ macro avg 0.91 0.92 0.92 11376
276
+ ```
277
+
278
+ ### Italian
279
+ Number of documents: 10000
280
+ ```
281
+ precision recall f1-score support
282
+
283
+ LOC 0.88 0.88 0.88 4592
284
+ ORG 0.86 0.86 0.86 4088
285
+ PER 0.96 0.96 0.96 4732
286
+
287
+ micro avg 0.90 0.90 0.90 13412
288
+ macro avg 0.90 0.90 0.90 13412
289
+ ```
290
+
291
+ ### Japanese
292
+ Number of documents: 10000
293
+ ```
294
+ precision recall f1-score support
295
+
296
+ ORG 0.62 0.61 0.62 4184
297
+ PER 0.76 0.81 0.78 3812
298
+ LOC 0.68 0.74 0.71 4281
299
+
300
+ micro avg 0.69 0.72 0.70 12277
301
+ macro avg 0.69 0.72 0.70 12277
302
+ ```
303
+
304
+ ### Javanese
305
+ Number of documents: 100
306
+ ```
307
+ precision recall f1-score support
308
+
309
+ ORG 0.79 0.80 0.80 46
310
+ PER 0.81 0.96 0.88 26
311
+ LOC 0.75 0.75 0.75 40
312
+
313
+ micro avg 0.78 0.82 0.80 112
314
+ macro avg 0.78 0.82 0.80 112
315
+ ```
316
+
317
+ ### Kazakh
318
+ Number of documents: 1000
319
+ ```
320
+ precision recall f1-score support
321
+
322
+ ORG 0.76 0.61 0.68 307
323
+ LOC 0.78 0.90 0.84 461
324
+ PER 0.87 0.91 0.89 367
325
+
326
+ micro avg 0.81 0.83 0.82 1135
327
+ macro avg 0.81 0.83 0.81 1135
328
+ ```
329
+
330
+ ### Korean
331
+ Number of documents: 10000
332
+ ```
333
+ precision recall f1-score support
334
+
335
+ LOC 0.86 0.89 0.88 5097
336
+ ORG 0.79 0.74 0.77 4218
337
+ PER 0.83 0.86 0.84 4014
338
+
339
+ micro avg 0.83 0.83 0.83 13329
340
+ macro avg 0.83 0.83 0.83 13329
341
+ ```
342
+
343
+ ### Malay
344
+ Number of documents: 1000
345
+ ```
346
+ precision recall f1-score support
347
+
348
+ ORG 0.87 0.89 0.88 368
349
+ PER 0.92 0.91 0.91 366
350
+ LOC 0.94 0.95 0.95 354
351
+
352
+ micro avg 0.91 0.92 0.91 1088
353
+ macro avg 0.91 0.92 0.91 1088
354
+ ```
355
+
356
+ ### Malayalam
357
+ Number of documents: 1000
358
+ ```
359
+ precision recall f1-score support
360
+
361
+ ORG 0.75 0.74 0.75 347
362
+ PER 0.84 0.89 0.86 417
363
+ LOC 0.74 0.75 0.75 391
364
+
365
+ micro avg 0.78 0.80 0.79 1155
366
+ macro avg 0.78 0.80 0.79 1155
367
+ ```
368
+
369
+ ### Marathi
370
+ Number of documents: 1000
371
+ ```
372
+ precision recall f1-score support
373
+
374
+ PER 0.89 0.94 0.92 394
375
+ LOC 0.82 0.84 0.83 457
376
+ ORG 0.84 0.78 0.81 339
377
+
378
+ micro avg 0.85 0.86 0.85 1190
379
+ macro avg 0.85 0.86 0.85 1190
380
+ ```
381
+
382
+ ### Persian
383
+ Number of documents: 10000
384
+ ```
385
+ precision recall f1-score support
386
+
387
+ PER 0.93 0.92 0.93 3540
388
+ LOC 0.93 0.93 0.93 3584
389
+ ORG 0.89 0.92 0.90 3370
390
+
391
+ micro avg 0.92 0.92 0.92 10494
392
+ macro avg 0.92 0.92 0.92 10494
393
+ ```
394
+
395
+ ### Portuguese
396
+ Number of documents: 10000
397
+ ```
398
+ precision recall f1-score support
399
+
400
+ LOC 0.90 0.91 0.91 4819
401
+ PER 0.94 0.92 0.93 4184
402
+ ORG 0.84 0.88 0.86 3670
403
+
404
+ micro avg 0.89 0.91 0.90 12673
405
+ macro avg 0.90 0.91 0.90 12673
406
+ ```
407
+
408
+ ### Russian
409
+ Number of documents: 10000
410
+ ```
411
+ precision recall f1-score support
412
+
413
+ PER 0.93 0.96 0.95 3574
414
+ LOC 0.87 0.89 0.88 4619
415
+ ORG 0.82 0.80 0.81 3858
416
+
417
+ micro avg 0.87 0.88 0.88 12051
418
+ macro avg 0.87 0.88 0.88 12051
419
+ ```
420
+
421
+ ### Spanish
422
+ Number of documents: 10000
423
+ ```
424
+ precision recall f1-score support
425
+
426
+ PER 0.95 0.93 0.94 3891
427
+ ORG 0.86 0.88 0.87 3709
428
+ LOC 0.89 0.91 0.90 4553
429
+
430
+ micro avg 0.90 0.91 0.90 12153
431
+ macro avg 0.90 0.91 0.90 12153
432
+ ```
433
+
434
+ ### Swahili
435
+ Number of documents: 1000
436
+ ```
437
+ precision recall f1-score support
438
+
439
+ ORG 0.82 0.85 0.83 349
440
+ PER 0.95 0.92 0.94 403
441
+ LOC 0.86 0.89 0.88 450
442
+
443
+ micro avg 0.88 0.89 0.88 1202
444
+ macro avg 0.88 0.89 0.88 1202
445
+ ```
446
+
447
+ ### Tagalog
448
+ Number of documents: 1000
449
+ ```
450
+ precision recall f1-score support
451
+
452
+ LOC 0.90 0.91 0.90 338
453
+ ORG 0.83 0.91 0.87 339
454
+ PER 0.96 0.93 0.95 350
455
+
456
+ micro avg 0.90 0.92 0.91 1027
457
+ macro avg 0.90 0.92 0.91 1027
458
+ ```
459
+
460
+ ### Tamil
461
+ Number of documents: 1000
462
+ ```
463
+ precision recall f1-score support
464
+
465
+ PER 0.90 0.92 0.91 392
466
+ ORG 0.77 0.76 0.76 370
467
+ LOC 0.78 0.81 0.79 421
468
+
469
+ micro avg 0.82 0.83 0.82 1183
470
+ macro avg 0.82 0.83 0.82 1183
471
+ ```
472
+
473
+ ### Telugu
474
+ Number of documents: 1000
475
+ ```
476
+ precision recall f1-score support
477
+
478
+ ORG 0.67 0.55 0.61 347
479
+ LOC 0.78 0.87 0.82 453
480
+ PER 0.73 0.86 0.79 393
481
+
482
+ micro avg 0.74 0.77 0.76 1193
483
+ macro avg 0.73 0.77 0.75 1193
484
+ ```
485
+
486
+ ### Thai
487
+ Number of documents: 10000
488
+ ```
489
+ precision recall f1-score support
490
+
491
+ LOC 0.63 0.76 0.69 3928
492
+ PER 0.78 0.83 0.80 6537
493
+ ORG 0.59 0.59 0.59 4257
494
+
495
+ micro avg 0.68 0.74 0.71 14722
496
+ macro avg 0.68 0.74 0.71 14722
497
+ ```
498
+
499
+ ### Turkish
500
+ Number of documents: 10000
501
+ ```
502
+ precision recall f1-score support
503
+
504
+ PER 0.94 0.94 0.94 4337
505
+ ORG 0.88 0.89 0.88 4094
506
+ LOC 0.90 0.92 0.91 4929
507
+
508
+ micro avg 0.90 0.92 0.91 13360
509
+ macro avg 0.91 0.92 0.91 13360
510
+ ```
511
+
512
+ ### Urdu
513
+ Number of documents: 1000
514
+ ```
515
+ precision recall f1-score support
516
+
517
+ LOC 0.90 0.95 0.93 352
518
+ PER 0.96 0.96 0.96 333
519
+ ORG 0.91 0.90 0.90 326
520
+
521
+ micro avg 0.92 0.94 0.93 1011
522
+ macro avg 0.92 0.94 0.93 1011
523
+ ```
524
+
525
+ ### Vietnamese
526
+ Number of documents: 10000
527
+ ```
528
+ precision recall f1-score support
529
+
530
+ ORG 0.86 0.87 0.86 3579
531
+ LOC 0.88 0.91 0.90 3811
532
+ PER 0.92 0.93 0.93 3717
533
+
534
+ micro avg 0.89 0.90 0.90 11107
535
+ macro avg 0.89 0.90 0.90 11107
536
+ ```
537
+
538
+ ### Yoruba
539
+ Number of documents: 100
540
+ ```
541
+ precision recall f1-score support
542
+
543
+ LOC 0.54 0.72 0.62 36
544
+ ORG 0.58 0.31 0.41 35
545
+ PER 0.77 1.00 0.87 36
546
+
547
+ micro avg 0.64 0.68 0.66 107
548
+ macro avg 0.63 0.68 0.63 107
549
+ ```
550
+
551
+ ## Reproduce the results
552
+ Download and prepare the dataset from the [XTREME repo](https://github.com/google-research/xtreme#download-the-data). Next, from the root of the transformers repo run:
553
+ ```
554
+ cd examples/ner
555
+ python run_tf_ner.py \
556
+ --data_dir . \
557
+ --labels ./labels.txt \
558
+ --model_name_or_path jplu/tf-xlm-roberta-base \
559
+ --output_dir model \
560
+ --max-seq-length 128 \
561
+ --num_train_epochs 2 \
562
+ --per_gpu_train_batch_size 16 \
563
+ --per_gpu_eval_batch_size 32 \
564
+ --do_train \
565
+ --do_eval \
566
+ --logging_dir logs \
567
+ --mode token-classification \
568
+ --evaluate_during_training \
569
+ --optimizer_name adamw
570
+ ```
571
+
572
+ ## Usage with pipelines
573
+ ```python
574
+ from transformers import pipeline
575
+
576
+ nlp_ner = pipeline(
577
+ "ner",
578
+ model="jplu/tf-xlm-r-ner-40-lang",
579
+ tokenizer=(
580
+ 'jplu/tf-xlm-r-ner-40-lang',
581
+ {"use_fast": True}),
582
+ framework="tf"
583
+ )
584
+
585
+ text_fr = "Barack Obama est né à Hawaï."
586
+ text_en = "Barack Obama was born in Hawaii."
587
+ text_es = "Barack Obama nació en Hawai."
588
+ text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。"
589
+ text_ar = "ولد باراك أوباما في هاواي."
590
+
591
+ nlp_ner(text_fr)
592
+ #Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}]
593
+ nlp_ner(text_en)
594
+ #Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}]
595
+ nlp_ner(test_es)
596
+ #Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}]
597
+ nlp_ner(test_zh)
598
+ #Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}]
599
+ nlp_ner(test_ar)
600
+ #Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}]
601
+
602
+ ```