File size: 5,107 Bytes
85e238e 1abd43d 85e238e 520a92d 1abd43d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e fadab48 85e238e fadab48 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 1abd43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
language:
- fr
- en
license: apache-2.0
library_name: transformers
tags:
- lucie
- lucie-boosted
- llama
datasets:
- jpacifico/french-orca-dpo-pairs-revised
model-index:
- name: Lucie-Boosted-7B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 25.66
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 10.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.76
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.24
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.4
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 7.0
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
name: Open LLM Leaderboard
---
### Lucie-Boosted-7B-Instruct
Post-training optimization of the foundation model [OpenLLM-France/Lucie-7B-Instruct](https://huggingface.co/OpenLLM-France/Lucie-7B-Instruct)
DPO fine-tuning using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) RLHF dataset.
Training in French also enhances the model's overall performance.
*Lucie-7B has a context size of 32K tokens*
### OpenLLM Leaderboard
coming soon
### MT-Bench
coming soon
### Usage
You can run this model using this [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
You can also run Lucie-Boosted using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
### Limitations
The Lucie-Boosted model is a quick demonstration that the Lucie foundation model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.
- **Developed by:** Jonathan Pacifico, 2025
- **Model type:** LLM
- **Language(s) (NLP):** French, English
- **License:** Apache-2.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/jpacifico__Lucie-Boosted-7B-Instruct-details)
| Metric |Value|
|-------------------|----:|
|Avg. | 8.22|
|IFEval (0-Shot) |25.66|
|BBH (3-Shot) |10.26|
|MATH Lvl 5 (4-Shot)| 0.76|
|GPQA (0-shot) | 2.24|
|MuSR (0-shot) | 3.40|
|MMLU-PRO (5-shot) | 7.00|
|