File size: 2,023 Bytes
994fa15 f2d5a01 994fa15 f2d5a01 994fa15 08e4192 994fa15 f2d5a01 994fa15 f2d5a01 994fa15 f2d5a01 994fa15 47fb0ff f2d5a01 994fa15 f2d5a01 994fa15 f2d5a01 78b414e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
library_name: transformers
license: apache-2.0
language:
- fr
- en
datasets:
- jpacifico/French-Alpaca-dataset-Instruct-110K
---
## Model Card for Model ID
A 7B language model. Good in French.
![image/jpeg](https://github.com/jpacifico/French-Alpaca/blob/main/Assets/French-Alpaca_500px.png?raw=true)
### Model Description
The French-Alpaca is a 7.24B params LLM model based on the Mistral-7B-Instruct-v0.2 foundation model,
fine-tuned from the original French-Alpaca-dataset entirely generated with OpenAI GPT-3.5-turbo.
French-Alpaca is a general model and can itself be finetuned to be specialized for specific use cases.
The fine-tuning method is inspired from https://crfm.stanford.edu/2023/03/13/alpaca.html
### Usage & Test
```python
#!pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jpacifico/French-Alpaca-7B-Instruct-beta"
messages = [{"role": "user", "content": "Rédige un article sur la fin des vendanges dans le Mâconnais."}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
You can test French-Alpaca with this dedicated and compatible colab notebook (with GPU) :
https://github.com/jpacifico/French-Alpaca/blob/main/French_Alpaca_inference_test_colab.ipynb
### Limitations
The French-Alpaca model is a quick demonstration that a base 7B model can be easily fine-tuned to specialize in a particular language.
It does not have any moderation mechanisms.
- **Developed by:** Jonathan Pacifico, 2024
- **Model type:** LLM
- **Language(s) (NLP):** French
- **License:** Apache 2.0
- **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.2 |