leaderboard-pr-bot's picture
Adding Evaluation Results
37ed490 verified
|
raw
history blame
7.68 kB
metadata
language:
  - fr
  - en
license: mit
library_name: transformers
tags:
  - french
  - chocolatine
datasets:
  - jpacifico/french-orca-dpo-pairs-revised
pipeline_tag: text-generation
model-index:
  - name: Chocolatine-14B-Instruct-4k-DPO
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 46.89
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-4k-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 48.02
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-4k-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 14.88
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-4k-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.19
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-4k-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.15
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-4k-DPO
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 41.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-4k-DPO
          name: Open LLM Leaderboard

Chocolatine-14B-Instruct-4k-DPO

DPO fine-tuned of microsoft/Phi-3-medium-4k-instruct (14B params)
using the jpacifico/french-orca-dpo-pairs-revised rlhf dataset.
Training in French also improves the model in English, surpassing the performances of its base model.
Window context = 4k tokens

Benchmarks

Submitted on the OpenLLM Leaderboard (aug 2024)
Results coming soon.

MT-Bench-French

Chocolatine-14B-Instruct-4k-DPO is outperforming GPT-3.5-Turbo and Phi-3-medium-4k-instruct on
MT-Bench-French, used with multilingual-mt-bench

########## First turn ##########
                                           score
model                               turn        
Chocolatine-14B-Instruct-4k-DPO     1     8.6375
Phi-3-medium-4k-instruct            1     8.2250
gpt-3.5-turbo                       1     8.1375
Chocolatine-3B-Instruct-DPO-Revised 1     7.9875
Daredevil-8B                        1     7.8875
Chocolatine-3B-Instruct-DPO-v1.0    1     7.6875
NeuralDaredevil-8B-abliterated      1     7.6250
Phi-3-mini-4k-instruct              1     7.2125
Meta-Llama-3-8B-Instruct            1     7.1625
vigostral-7b-chat                   1     6.7875
Mistral-7B-Instruct-v0.3            1     6.7500
Mistral-7B-Instruct-v0.2            1     6.2875

########## Second turn ##########
                                             score
model                               turn          
Chocolatine-3B-Instruct-DPO-Revised 2     7.937500
Phi-3-medium-4k-instruct            2     7.750000
Chocolatine-14B-Instruct-4k-DPO     2     7.737500
gpt-3.5-turbo                       2     7.679167
Chocolatine-3B-Instruct-DPO-v1.0    2     7.612500
NeuralDaredevil-8B-abliterated      2     7.125000
Daredevil-8B                        2     7.087500
Meta-Llama-3-8B-Instruct            2     6.800000
Mistral-7B-Instruct-v0.2            2     6.512500
Mistral-7B-Instruct-v0.3            2     6.500000
Phi-3-mini-4k-instruct              2     6.487500
vigostral-7b-chat                   2     6.162500

########## Average ##########
                                        score
model                                        
Chocolatine-14B-Instruct-4k-DPO      8.187500
Phi-3-medium-4k-instruct             7.987500
Chocolatine-3B-Instruct-DPO-Revised  7.962500
gpt-3.5-turbo                        7.908333
Chocolatine-3B-Instruct-DPO-v1.0     7.650000
Daredevil-8B                         7.487500
NeuralDaredevil-8B-abliterated       7.375000
Meta-Llama-3-8B-Instruct             6.981250
Phi-3-mini-4k-instruct               6.850000
Mistral-7B-Instruct-v0.3             6.625000
vigostral-7b-chat                    6.475000
Mistral-7B-Instruct-v0.2             6.400000

Usage

You can run this model using my Colab notebook

You can also run Chocolatine using the following code:

import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])

Limitations

The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.

  • Developed by: Jonathan Pacifico, 2024
  • Model type: LLM
  • Language(s) (NLP): French, English
  • License: MIT

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.83
IFEval (0-Shot) 46.89
BBH (3-Shot) 48.02
MATH Lvl 5 (4-Shot) 14.88
GPQA (0-shot) 12.19
MuSR (0-shot) 15.15
MMLU-PRO (5-shot) 41.82