File size: 4,719 Bytes
5922620 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-small_tobacco3482_kd_MSE
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dit-small_tobacco3482_kd_MSE
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7275
- Accuracy: 0.21
- Brier Loss: 0.8834
- Nll: 6.7677
- F1 Micro: 0.2100
- F1 Macro: 0.1146
- Ece: 0.2647
- Aurc: 0.7666
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:-------:|:--------:|:--------:|:------:|:------:|
| No log | 0.96 | 3 | 7.1014 | 0.06 | 0.9055 | 7.9056 | 0.06 | 0.0114 | 0.1732 | 0.9050 |
| No log | 1.96 | 6 | 6.9659 | 0.125 | 0.8970 | 10.1253 | 0.125 | 0.0631 | 0.2010 | 0.8465 |
| No log | 2.96 | 9 | 6.8528 | 0.075 | 0.8954 | 7.0315 | 0.075 | 0.0258 | 0.1912 | 0.8871 |
| No log | 3.96 | 12 | 6.8522 | 0.205 | 0.8955 | 7.0990 | 0.205 | 0.0776 | 0.2426 | 0.7588 |
| No log | 4.96 | 15 | 6.8465 | 0.19 | 0.8959 | 7.1340 | 0.19 | 0.0627 | 0.2308 | 0.7536 |
| No log | 5.96 | 18 | 6.8246 | 0.205 | 0.8937 | 7.1101 | 0.205 | 0.0867 | 0.2410 | 0.7354 |
| No log | 6.96 | 21 | 6.8054 | 0.085 | 0.8918 | 7.0215 | 0.085 | 0.0435 | 0.1847 | 0.8289 |
| No log | 7.96 | 24 | 6.8025 | 0.22 | 0.8879 | 6.8272 | 0.22 | 0.0967 | 0.2487 | 0.7438 |
| No log | 8.96 | 27 | 6.8045 | 0.21 | 0.8871 | 6.3740 | 0.2100 | 0.0992 | 0.2412 | 0.7634 |
| No log | 9.96 | 30 | 6.8013 | 0.22 | 0.8869 | 6.9538 | 0.22 | 0.1016 | 0.2495 | 0.7633 |
| No log | 10.96 | 33 | 6.7920 | 0.215 | 0.8865 | 6.9670 | 0.2150 | 0.0968 | 0.2549 | 0.7577 |
| No log | 11.96 | 36 | 6.7817 | 0.22 | 0.8867 | 6.9953 | 0.22 | 0.1004 | 0.2455 | 0.7437 |
| No log | 12.96 | 39 | 6.7729 | 0.17 | 0.8884 | 6.9738 | 0.17 | 0.0891 | 0.2277 | 0.7865 |
| No log | 13.96 | 42 | 6.7632 | 0.2 | 0.8873 | 6.9622 | 0.2000 | 0.0998 | 0.2393 | 0.7413 |
| No log | 14.96 | 45 | 6.7548 | 0.215 | 0.8860 | 6.9576 | 0.2150 | 0.1010 | 0.2635 | 0.7189 |
| No log | 15.96 | 48 | 6.7489 | 0.22 | 0.8857 | 6.8386 | 0.22 | 0.1024 | 0.2665 | 0.7098 |
| No log | 16.96 | 51 | 6.7457 | 0.23 | 0.8855 | 6.8730 | 0.23 | 0.1129 | 0.2506 | 0.7217 |
| No log | 17.96 | 54 | 6.7455 | 0.215 | 0.8864 | 6.8688 | 0.2150 | 0.1058 | 0.2576 | 0.7528 |
| No log | 18.96 | 57 | 6.7424 | 0.16 | 0.8861 | 6.8631 | 0.16 | 0.0843 | 0.2281 | 0.8036 |
| No log | 19.96 | 60 | 6.7380 | 0.155 | 0.8850 | 6.8443 | 0.155 | 0.0871 | 0.2315 | 0.7937 |
| No log | 20.96 | 63 | 6.7348 | 0.195 | 0.8841 | 6.7769 | 0.195 | 0.0949 | 0.2501 | 0.7799 |
| No log | 21.96 | 66 | 6.7317 | 0.175 | 0.8838 | 6.7692 | 0.175 | 0.1025 | 0.2421 | 0.7797 |
| No log | 22.96 | 69 | 6.7293 | 0.175 | 0.8836 | 6.7682 | 0.175 | 0.1012 | 0.2452 | 0.7799 |
| No log | 23.96 | 72 | 6.7281 | 0.205 | 0.8834 | 6.7672 | 0.205 | 0.1132 | 0.2566 | 0.7679 |
| No log | 24.96 | 75 | 6.7275 | 0.21 | 0.8834 | 6.7677 | 0.2100 | 0.1146 | 0.2647 | 0.7666 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|