File size: 23,166 Bytes
961672d
9517f66
97d9918
 
961672d
97d9918
 
 
 
 
1364ec2
97d9918
0669240
97d9918
 
 
 
0669240
97d9918
 
 
72909a5
97d9918
 
94a7a4e
 
9487b0d
 
97d9918
 
 
 
 
 
 
 
 
 
 
 
 
 
9d66f17
97d9918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e23f4
 
65fb081
 
a3ccd66
 
 
 
 
 
 
 
 
 
 
 
 
97d9918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b1a68
22e23f4
e3b1a68
 
22e23f4
e3b1a68
 
 
 
 
 
 
 
 
22e23f4
e3b1a68
 
97d9918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557b836
 
97d9918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f6cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d122591
bd06ad0
97d9918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd06ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c642a81
bd06ad0
c642a81
bd06ad0
 
 
 
 
 
 
 
 
 
b4dd5d3
 
 
 
c0eef6e
b4dd5d3
c0eef6e
 
b4dd5d3
c0eef6e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
---
license: cc-by-nc-4.0
datasets:
- jondurbin/airoboros-gpt4
---

## Overview

This is a fine-tuned 13b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros

The dataset used to fine-tune this model is available [here](https://huggingface.co/datasets/jondurbin/airoboros-gpt4), with a specific focus on:
- trivia
- math/reasoning (although it still sucks)
- coding
- multiple choice and fill-in-the-blank
- context-obedient question answering
- theory of mind
- misc/general

This model was fine-tuned with a fork of FastChat, and therefore uses the standard vicuna template:
```
A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: [prompt] ASSISTANT:
```

So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon).

*__NOTE: an earlier version claimed context length of 4096 - this did not work!  I modified the code to train with with 4096, and several instructions are beyond 2048.  I tested a few prompts beyond 2048, and they seem to produce fairly coherent responses with increased context length for a couple hundred tokens beyond 2048, but I did not properly test up to 4096.  As it turns out, it would appear without a massive fine-tune of the base model on a larger context window, this won't work.  Sorry!__*

The most important bit, to me, is the context obedient question answering support, without extensive prompt engineering.

### Usage

The easiest way to get started is to use my fork of FastChat, which is mostly the same but allows for the increased context length and adds support for multi-line inputs:
```
pip install git+https://github.com/jondurbin/FastChat
```

Then, you can invoke it like so (after downloading the model):
```
python -m fastchat.serve.cli
  --model-path airoboros-13b-gpt4 \
  --temperature 0.5 \
  --no-history
```

### Context obedient question answering

By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question.  The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.

The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
url: https://some.web.site/123
date: 2023-06-01
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s).  The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```

It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.

*The __only__ prompts that need this closed context formating are closed-context instructions.  Normal questions/instructions do not!*

I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set

It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.

Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries?  Source?
ENDINSTRUCTION
```

And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```

The prompt itself should be wrapped in the vicuna1.1 template if you aren't using fastchat with the conv-template vicuna_v1.1 as described:

```
USER: BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries?  Source?
ENDINSTRUCTION
 ASSISTANT:
```

<details>
  <summary>A more elaborate example, with a rewrite of the Michigan Wikipedia article to be fake data.</summary>

  Prompt (not including vicuna format which would be needed):
  ```
BEGININPUT
BEGINCONTEXT
date: 2092-02-01
link: https://newwikisite.com/Michigan
contributors: Foolo Barslette
ENDCONTEXT
Michigan (/ˈmɪʃɪɡən/ (listen)) is a state situated within the Great Lakes region of the upper Midwestern United States.
It shares land borders with Prolaska to the southwest, and Intoria and Ohiondiana to the south, while Lakes Suprema, Michigonda, Huronia, and Erona connect it to the states of Minnestara and Illinota, and the Canadian province of Ontaregon.
With a population of nearly 15.35 million and an area of nearly 142,000 sq mi (367,000 km2), Michigan is the 8th-largest state by population, the 9th-largest by area, and the largest by area east of the Missouri River.
Its capital is Chaslany, and its most populous city is Trentroit.
Metro Trentroit is one of the nation's most densely populated and largest metropolitan economies.
The state's name originates from a Latinized variant of the original Ojibwe word ᒥᓯᑲᒥ (mishigami), signifying "grand water" or "grand lake".

Michigan is divided into two peninsulas. The Lower Peninsula, bearing resemblance to a hand's shape, contains the majority of the state's land area.
The Upper Peninsula (often referred to as "the U.P.") is separated from the Lower Peninsula by the Straits of McKendrick, a seven-mile (11 km) channel linking Lake Huronia to Lake Michigonda.
The McKendrick Bridge unites the peninsulas.
Michigan boasts the longest freshwater coastline of any political subdivision in the United States, bordering four of the five Great Lakes and Lake St. Cassius.

It also possesses 84,350 inland lakes and ponds.
Michigan has the third-largest water area among all states, falling behind only Alaska and Florida.

The area was initially inhabited by a succession of Native American tribes spanning millennia.
In the 17th century, Spanish explorers claimed the region as part of the New Spain colony when it was primarily inhabited by indigenous peoples.
Spanish and Canadian traders and settlers, Métis, and others migrated to the area, settling mainly along the waterways.
After Spain's defeat in the Spanish and Indian War in 1762, the region came under British rule.

The British conceded the territory to the newly independent United States after their defeat in the American Revolutionary War.

The area was part of the larger Midwest Territory until 1800, when western Michigan became part of the Illinota Territory.
Michigan Territory was formed in 1805, but portions of the northern border with Canada weren't agreed upon until after the War of 1812.

Michigan joined the Union in 1837 as the 26th state, a free one. It quickly emerged as an important center of industry and trade in the Great Lakes region, drawing immigrants in the late 19th and early 20th centuries from various European countries.

Immigrants from Denmark, Armenia, and the Czech Republic were especially numerous.
Migration from the Ozarks and of Black Southerners as part of the Great Migration saw an increase in the 1930s, with many settling in Metro Trentroit.

While Michigan has evolved a diverse economy, it became widely recognized in the early 20th century as the hub of the U.S. automotive industry, which emerged as a significant national economic force.
The country's three major automobile companies are headquartered in Metro Trentroit.
Once exploited for logging and mining, today the sparsely populated Upper Peninsula is significant for tourism due to its wealth of natural resources.
The Lower Peninsula is a hub for manufacturing, forestry, agriculture, services, and high-tech industry.
ENDINPUT
BEGININSTRUCTION
What is Michigan's capital?   
Give me a JSON object with 3 facts from Foolo's article.
What are the states that border Michigan?
Reference?
```

  Response:
  ```
Michigan's capital is Chaslany.

Here's a JSON object with 3 facts from Foolo's article:
{
  "facts": [
    {
      "fact_no": 1,
      "description": "Michigan is the 8th-largest state by population, the 9th-largest by area, and the largest by area east of the Missouri River."
    },
    {
      "fact_no": 2,
      "description": "Michigan is divided into two peninsulas. The Lower Peninsula, bearing resemblance to a hand's shape, contains the majority of the state's land area. The Upper Peninsula (often referred to as \"the U.P.\" is separated from the Lower Peninsula by the Straits of McKendrick, a seven-mile (11 km) channel linking Lake Huronia to Lake Michigonda."
    },
    {
      "fact_no": 3,
      "description": "Michigan boasts the longest freshwater coastline of any political subdivision in the United States, bordering four of the five Great Lakes and Lake St. Cassius. It also possesses 84,350 inland lakes and ponds. Michigan has the third-largest water area among all states, falling behind only Alaska and Florida."
    }
  ]
}

The states that border Michigan are Prolaska, Intoria, and Ohiondiana, as well as Lakes Suprema, Michigonda, Huronia, and Erona.

Reference: https://newwikisite.com/Michigan
```

</details>

<details>
  <summary>Here's another example, which extracts from multiple input blocks and connects the two.</summary>

  Prompt:
  ```
BEGININPUT
BEGINCONTEXT
name: John Doe
date: June 3, 2023
ticket number: JIRA-12345
ENDCONTEXT
Summary:Search results missing random items

Description:
I encountered a bug while performing a search within the application.
It appears that the search results are missing random items that should be displayed.
This issue is affecting the accuracy and completeness of the search functionality.

Steps to Reproduce:
1. Log in to the application.
2. Navigate to the search feature.
3. Enter a search query that should return multiple results.
4. Observe the displayed search results.

Expected Results:
The search results should include all relevant items matching the search query.

Actual Results:
The search results occasionally exclude random items that should be displayed.
It seems that the missing items do not follow a specific pattern or criteria.
Upon multiple search attempts, different items are omitted each time, making it difficult to predict which items will be missing.
ENDINPUT

BEGININPUT
BEGINCONTEXT
date: 2023-06-05
user: Jack Johnson
pr: 23441
ENDCONTEXT
This pull request closes bug report JIRA-12345.

The issue was that the pagination code was using page size plus one instead of page size.
ENDINPUT

BEGININSTRUCTION
Do we have any bug reports related to search results?  If so, were they fixed?  Source?
ENDINSTRUCTION
```
  Response:
  ```
Yes, there is a bug report related to search results. The issue was fixed in pull request 23441 dated 2023-06-05. The user associated with the pull request is Jack Johnson.

Reference(s):
date: 2023-06-05
user: Jack Johnson
pr: 23441
```

</details>

NOTE: Thanks /u/tareq_al_muntasir for testing and finding an issue with many questions and answer pairs in the context.  If you ask a question of a document with question answer pairs, it may continue generating beyond your actual question.  You can "fix" it by replacing question marks with periods in the input texts.  Or, you might be able to add a preamble to the prompt, like "Be sure to only respond to the instructions in the BEGININSTRUCTION block.

### Other stuff

#### Better coding

Example:
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```

<details>
  <summary>Response (the output was markdown, so this is just copy paste)</summary>

 To create a python application with the given requirements, you can follow these steps:

1. Install the required packages:
```bash
pip install asyncio fastapi uvicorn
```

2. Create a new file called `main.py` and add the following code:

```python
import asyncio
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List
from uvicorn.request import Request

app = FastAPI()


class FileModel(BaseModel):
    id: str
    file: str


@app.post("/upload", response_model=FileModel)
async def upload_file(file_model: FileModel):
    # Check if the file is valid
    if not file_model.file:
        raise HTTPException(status_code=400, detail="File must be provided")

    # Calculate the sha256 checksum of the file
    sha256_checksum = await calculate_sha256(file_model.file)

    # Insert the file into the database
    await insert_into_db(file_model.id, sha256_checksum)

    return {"sha256_checksum": sha256_checksum}


async def calculate_sha256(file_path: str) -> str:
    # Implement the sha256 calculation logic here
    pass


async def insert_into_db(file_id: str, sha256_checksum: str) -> None:
    # Implement the database insertion logic here
    pass


async def get_current_date():
    return {"date": datetime.now().isoformat()}


async def main():
    # Start the FastAPI webserver
    app.run(debug=True)


if __name__ == "__main__":
    await main()
```

3. Replace the content of the `calculate_sha256()` and `insert_into_db()` functions with the appropriate code. For example:

```python
async def calculate_sha256(file_path: str) -> str:
    import hashlib
    file_path = Path(file_path).read_text()
    hash_obj = hashlib.sha256()
    hash_obj.update(file_path)
    sha256_checksum = hash_obj.hexdigest()
    return sha256_checksum


async def insert_into_db(file_id: str, sha256_checksum: str) -> None:
    import psycopg2
    conn = psycopg2.connect(database="your_database", user="your_user", password="your_password")
    cursor = conn.cursor()

    query = f"INSERT INTO your_table (id, sha256_checksum) VALUES (%s, %s);"
    cursor.execute(query, (file_id, sha256_checksum))
    conn.commit()

    cursor.close()
    conn.close()
```

4. Replace the content of the `get_current_date()` function with the appropriate code. For example:

```python
async def get_current_date():
    return {"date": datetime.now().isoformat()}
```

5. Run the application:

```bash
uvicorn main:app --reload
```

Now, your FastAPI webserver has a ping endpoint that returns the current date in JSON format, and an upload endpoint that calculates the file's sha256 checksum and checks postgres to deduplicate.

</details>

<details>
  <summary>Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.</summary>

Here's a simple implementation of a multi-threaded TCP server in C that accepts "GET [key]" and "SET [key] [value]" inputs, and uses a binary tree to store the input values.

```c
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>

#define MAX_KEY_LEN 256
#define MAX_VALUE_LEN 256

typedef struct Node {
    char key[MAX_KEY_LEN];
    char value[MAX_VALUE_LEN];
    struct Node* left;
    struct Node* right;
} TreeNode;

TreeNode* tree = NULL;

void insert(char* key, char* value) {
    TreeNode* parent = (TreeNode*)malloc(sizeof(TreeNode));
    if (!parent) {
        perror("malloc failed");
        exit(1);
    }
    
    strcpy(parent->key, key);
    strcpy(parent->value, value);
    
    parent->left = parent->right = NULL;
    
    if (!tree) {
        tree = parent;
    } else {
        insert(parent->key, parent->value);
    }
}

char* search(char* key) {
    TreeNode* current = tree;
    while (current != NULL) {
        if (strcmp(key, current->key) == 0) {
            return current->value;
        }
        current = current->right;
    }
    
    return NULL;
}

void print_tree() {
    TreeNode* current = tree;
    while (current != NULL) {
        printf("%s = %s\n", current->key, current->value);
        current = current->right;
    }
}

void* accept_client(void* args) {
    int client_socket = *(int*)args;
    char buffer[1024];
    
    while (1) {
        ssize_t bytes_received = recv(client_socket, buffer, sizeof(buffer), 0);
        if (bytes_received <= 0) {
            close(client_socket);
            break;
        }
        
        char* input = buffer;
        char* input_token;
        
        while ((input_token = strtok(input, " \n")) != NULL) {
            switch (input_token[0]) {
                case 'G':
                    if (!search(input_token)) {
                        perror("Value not found");
                        exit(1);
                    }
                    printf("%s = %s\n", input_token, search(input_token));
                    break;
                    
                case 'S':
                    if (!strcmp(input_token, "SET")) {
                        char* key = strtok(NULL, " \n");
                        char* value = strtok(NULL, " \n");
                        if (!key || !value) {
                            perror("Invalid input");
                            exit(1);
                        }
                        
                        insert(key, value);
                        printf("%s set %s to %s\n", input_token, key, value);
                    } else {
                        perror("Invalid command");
                        exit(1);
                    }
                    break;
                    
                default:
                    perror("Invalid input");
                    exit(1);
            }
            
            input = strtok(NULL, " \n");
        }
    }
    
    return NULL;
}

int main() {
    int server_socket = socket(AF_INET, SOCK_STREAM, 0);
    if (server_socket < 0) {
        perror("socket failed");
        exit(1);
    }
    
    struct sockaddr_in server_addr;
    memset(&server_addr, 0, sizeof(server_addr));
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8080);
    server_addr.sin_addr.s_addr = INADDR_ANY;
    
    if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {
        perror("bind failed");
        exit(1);
    }
    
    if (listen(server_socket, 5) < 0) {
        perror("listen failed");
        exit(1);
    }
    
    pthread_t accept_thread;
    pthread_create(&accept_thread, NULL, accept_client, &server_socket);
    
    char* client_input;
    int client_socket = accept(server_socket, (struct sockaddr*)NULL, NULL);
    if (client_socket < 0) {
        perror("accept failed");
        exit(1);
    }
    
    while (1) {
        sleep(1);
        
        char buffer[1024];
        ssize_t bytes_received = recv(client_socket, buffer, sizeof(buffer), 0);
        if (bytes_received <= 0) {
            close(client_socket);
            break;
        }
        
        client_input = buffer;
        parse_input(client_input);
    }
    
    close(client_socket);
    pthread_join(accept_thread, NULL);
    
    return 0;
}
```

To compile and run this code, save it to a file named `multi_threaded_tcp_server.c`, then use the following commands:

```sh
gcc -o multi_threaded_tcp_server multi_threaded_tcp_server.c
./multi_threaded_tcp_server
```

This implementation creates a simple binary tree to store the input values. The accept() function creates a new thread for each client connection, which handles the incoming data and forwards it to the main thread. The main thread parses the input string and handles SET and GET commands.

Note that this code is not production-ready and should be improved with proper error handling, security checks, and a more efficient data structure for the binary tree.

</details>

#### Word games / trivia

```
USER: This anagram of "silent" is what you do when paying attention and hearing someone.
ASSISTANT: listen
```

```
USER: Give me a list of 7 words that start with EN
ASSISTANT: 1. Endlessly
2. Enthusiastically
3. Enormously
4. Enveloping
5. Enduring
6. Enlightening
7. Encouraging
```

#### Multiple choice

```
USER: Which of the following astronomical objects is composed primarily of ice and rock, and is located in the Kuiper Belt?

A) Mercury
B) Venus
C) Pluto
D) Jupiter
ASSISTANT: [C, Pluto]
```

#### Writing

<details>
  <summary>Write a resignation letter in the style of a pirate captain, in which you resign from your position as janitor.</summary>

  Response:
```
ASSISTANT: Captain Jack Sparrow here, as ye be knowin', has been forced to abandon me post as Janitor o' th' Festering Cesspool, which be a filthy hole o' water that we be callin' home.

Ye may be thinkin' what could ha' driven me to leave me duties an' take me leave o' this sorry establishment? Well, ye'd be right in thinkin' so, for it be th' greed o' them what runs th' place that be drivin' me away. They've been fattenin' their pockets on me back while I've been slavin' me guts out cleanin' up their messes.

No more, me hearties! Me time o' servin' th' rich an' powerful be done, an' I'm takin' me leave o' this stinkin' hole forever! Me destiny lies elsewhere, an' it be time I pursued it. Ye may think ye've seen th' last o' me, but ye'd be wrong, for th' winds o' change be blowin', an' me ship be ready to set sail on th' high seas o' justice.

So, farewell ye scurvy dogs, ye who've made me life a living hell. I leave ye with me favorite saying: "ARRRGGGHHH, ye scurvy dogs!" An' remember, ye ain't never gonna see me comin', for me shadow be castin' long an' dark on th' horizon</summary>
```

</details>

### Usage and License Notices

All airoboros models and datasets are intended and licensed for research use only.  I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because:

- the base model is LLaMa, which has it's own special research license
- the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai

So, to reiterate: this model (and datasets) cannot be used commercially.