File size: 5,568 Bytes
f4d2d84
 
fee4dce
f4d2d84
 
3dc7348
f4d2d84
 
 
 
fee4dce
f4d2d84
 
 
 
fee4dce
 
f4d2d84
 
 
 
2915b27
f4d2d84
 
 
 
 
 
 
 
2915b27
f4d2d84
 
2915b27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fee4dce
2915b27
 
fee4dce
2915b27
 
fee4dce
2915b27
 
fee4dce
2915b27
 
f4d2d84
 
 
 
4b8dd67
f4d2d84
 
4d24b30
 
f4d2d84
 
 
 
d974f44
 
f333d38
d974f44
 
f333d38
d974f44
f333d38
d974f44
f333d38
 
d974f44
 
 
f4d2d84
 
 
 
 
 
 
 
 
ea576d0
f4d2d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9af603
 
f4d2d84
c9af603
 
ea576d0
c9af603
 
ea576d0
c9af603
f4d2d84
 
 
2915b27
f4d2d84
2915b27
 
f4d2d84
 
2915b27
7927a19
2915b27
 
8539b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
2915b27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
language: fr
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- fr
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
- robust-speech-event
- mozilla-foundation/common_voice_6_0
model-index:
- name: XLSR Wav2Vec2 French by Jonatas Grosman
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice fr
      type: common_voice
      args: fr
    metrics:
       - name: Test WER
         type: wer
         value: 17.65
       - name: Test CER
         type: cer
         value: 4.89
       - name: Test WER (+LM)
         type: wer
         value: 13.59
       - name: Test CER (+LM)
         type: cer
         value: 3.91
  - task: 
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: fr
    metrics:
       - name: Dev WER
         type: wer
         value: 34.35
       - name: Dev CER
         type: cer
         value: 14.09
       - name: Dev WER (+LM)
         type: wer
         value: 24.72
       - name: Dev CER (+LM)
         type: cer
         value: 12.33
---

# Wav2Vec2-Large-XLSR-53-French

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on French using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:

```python
from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-french"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| "CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." | CE DERNIER ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE |
| CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ASHEMÉNID ET SEPT DES SASANDNIDES |
| "J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." | JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGES SUR LES AUTRES |
| LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. | LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS |
| IL Y A MAINTENANT UNE GARE ROUTIÈRE. | IL AMNARDIGAD LE TIRAN |
| HUIT | HUIT |
| DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION | DANS L'ATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION |
| LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES |
| ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES |
| ZÉRO | ZEGO |

## Evaluation

1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset mozilla-foundation/common_voice_6_0 --config fr --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021wav2vec2-large-xlsr-53-french,
  title={XLSR Wav2Vec2 French by Jonatas Grosman},
  author={Grosman, Jonatas},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-french}},
  year={2021}
}
```