jonaskoenig's picture
Update README.md
9c22793
metadata
license: mit
tags:
  - generated_from_keras_callback
model-index:
  - name: xtremedistil-l6-h256-uncased-future-time-references-D2
    results: []
datasets:
  - jonaskoenig/trump_administration_statement
  - jonaskoenig/future-time-refernces-static-filter-D2

xtremedistil-l6-h256-uncased-future-time-references-D2

This model is a fine-tuned version of microsoft/xtremedistil-l6-h256-uncased on jonaskoenig/future-time-refernces-static-filter-D2 and jonaskoenig/trump_administration_statement. It achieves the following results on the evaluation set:

  • Train Loss: 0.0055
  • Train Sparse Categorical Accuracy: 0.9984
  • Validation Loss: 0.0074
  • Validation Sparse Categorical Accuracy: 0.9984
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Sparse Categorical Accuracy Validation Loss Validation Sparse Categorical Accuracy Epoch
0.0388 0.9891 0.0154 0.9957 0
0.0133 0.9962 0.0088 0.9975 1
0.0087 0.9974 0.0081 0.9978 2
0.0068 0.9980 0.0074 0.9982 3
0.0055 0.9984 0.0074 0.9984 4

The test accuracy is: 99.81%

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.9.1
  • Datasets 2.3.2
  • Tokenizers 0.12.1