metadata
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: xtremedistil-l6-h256-uncased-future-time-references-D2
results: []
datasets:
- jonaskoenig/trump_administration_statement
- jonaskoenig/future-time-refernces-static-filter-D2
xtremedistil-l6-h256-uncased-future-time-references-D2
This model is a fine-tuned version of microsoft/xtremedistil-l6-h256-uncased on jonaskoenig/future-time-refernces-static-filter-D2 and jonaskoenig/trump_administration_statement. It achieves the following results on the evaluation set:
- Train Loss: 0.0055
- Train Sparse Categorical Accuracy: 0.9984
- Validation Loss: 0.0074
- Validation Sparse Categorical Accuracy: 0.9984
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
---|---|---|---|---|
0.0388 | 0.9891 | 0.0154 | 0.9957 | 0 |
0.0133 | 0.9962 | 0.0088 | 0.9975 | 1 |
0.0087 | 0.9974 | 0.0081 | 0.9978 | 2 |
0.0068 | 0.9980 | 0.0074 | 0.9982 | 3 |
0.0055 | 0.9984 | 0.0074 | 0.9984 | 4 |
The test accuracy is: 99.81%
Framework versions
- Transformers 4.20.1
- TensorFlow 2.9.1
- Datasets 2.3.2
- Tokenizers 0.12.1