--- license: mit tags: - generated_from_keras_callback model-index: - name: xtremedistil-l6-h256-uncased-future-time-references-D2 results: [] datasets: - jonaskoenig/trump_administration_statement - jonaskoenig/future-time-refernces-static-filter-D2 --- # xtremedistil-l6-h256-uncased-future-time-references-D2 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on [jonaskoenig/future-time-refernces-static-filter-D2](https://huggingface.co/datasets/jonaskoenig/future-time-refernces-static-filter-D2) and [jonaskoenig/trump_administration_statement](https://huggingface.co/datasets/jonaskoenig/trump_administration_statement). It achieves the following results on the evaluation set: - Train Loss: 0.0055 - Train Sparse Categorical Accuracy: 0.9984 - Validation Loss: 0.0074 - Validation Sparse Categorical Accuracy: 0.9984 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.0388 | 0.9891 | 0.0154 | 0.9957 | 0 | | 0.0133 | 0.9962 | 0.0088 | 0.9975 | 1 | | 0.0087 | 0.9974 | 0.0081 | 0.9978 | 2 | | 0.0068 | 0.9980 | 0.0074 | 0.9982 | 3 | | 0.0055 | 0.9984 | 0.0074 | 0.9984 | 4 | The test accuracy is: 99.81% ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1