File size: 7,041 Bytes
1df7cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07478b
 
 
 
 
 
 
 
1df7cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed1a84c
1df7cbe
 
 
ed1a84c
 
a07478b
 
 
 
 
 
 
 
 
 
1df7cbe
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6680
- Answer: {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809}
- Header: {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119}
- Question: {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065}
- Overall Precision: 0.6751
- Overall Recall: 0.7536
- Overall F1: 0.7122
- Overall Accuracy: 0.7957

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                       | Header                                                                                                      | Question                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8904        | 1.0   | 10   | 1.6569          | {'precision': 0.0226628895184136, 'recall': 0.029666254635352288, 'f1': 0.025695931477516063, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.13233724653148346, 'recall': 0.11643192488262911, 'f1': 0.12387612387612387, 'number': 1065} | 0.074             | 0.0743         | 0.0741     | 0.3562           |
| 1.5103        | 2.0   | 20   | 1.3215          | {'precision': 0.16376306620209058, 'recall': 0.17428924598269468, 'f1': 0.1688622754491018, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.37047970479704795, 'recall': 0.47136150234741786, 'f1': 0.4148760330578512, 'number': 1065}  | 0.2902            | 0.3226         | 0.3055     | 0.5678           |
| 1.1593        | 3.0   | 30   | 0.9985          | {'precision': 0.45689655172413796, 'recall': 0.5241038318912238, 'f1': 0.4881980426021877, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.5746268656716418, 'recall': 0.6507042253521127, 'f1': 0.6103038309114928, 'number': 1065}    | 0.5176            | 0.5605         | 0.5382     | 0.6952           |
| 0.8944        | 4.0   | 40   | 0.8291          | {'precision': 0.5676982591876208, 'recall': 0.7255871446229913, 'f1': 0.6370048833423766, 'number': 809}     | {'precision': 0.125, 'recall': 0.05042016806722689, 'f1': 0.07185628742514971, 'number': 119}               | {'precision': 0.648323301805675, 'recall': 0.707981220657277, 'f1': 0.6768402154398564, 'number': 1065}      | 0.6               | 0.6759         | 0.6357     | 0.7440           |
| 0.7344        | 5.0   | 50   | 0.7416          | {'precision': 0.6231422505307855, 'recall': 0.7255871446229913, 'f1': 0.670474014848658, 'number': 809}      | {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119}  | {'precision': 0.6871794871794872, 'recall': 0.7549295774647887, 'f1': 0.7194630872483222, 'number': 1065}    | 0.6419            | 0.7070         | 0.6729     | 0.7718           |
| 0.6312        | 6.0   | 60   | 0.7028          | {'precision': 0.616956077630235, 'recall': 0.7466007416563659, 'f1': 0.6756152125279643, 'number': 809}      | {'precision': 0.2413793103448276, 'recall': 0.17647058823529413, 'f1': 0.2038834951456311, 'number': 119}   | {'precision': 0.7020033388981636, 'recall': 0.7896713615023474, 'f1': 0.7432611577551921, 'number': 1065}    | 0.6475            | 0.7356         | 0.6887     | 0.7880           |
| 0.5603        | 7.0   | 70   | 0.6980          | {'precision': 0.6331550802139038, 'recall': 0.7317676143386898, 'f1': 0.6788990825688073, 'number': 809}     | {'precision': 0.2604166666666667, 'recall': 0.21008403361344538, 'f1': 0.23255813953488375, 'number': 119}  | {'precision': 0.6994219653179191, 'recall': 0.7953051643192488, 'f1': 0.7442882249560634, 'number': 1065}    | 0.6530            | 0.7346         | 0.6914     | 0.7861           |
| 0.5272        | 8.0   | 80   | 0.6733          | {'precision': 0.6592827004219409, 'recall': 0.7725587144622992, 'f1': 0.7114399544678428, 'number': 809}     | {'precision': 0.25, 'recall': 0.20168067226890757, 'f1': 0.22325581395348837, 'number': 119}                | {'precision': 0.7175188600167645, 'recall': 0.8037558685446009, 'f1': 0.758193091231178, 'number': 1065}     | 0.6728            | 0.7551         | 0.7116     | 0.7927           |
| 0.4849        | 9.0   | 90   | 0.6716          | {'precision': 0.6549145299145299, 'recall': 0.757725587144623, 'f1': 0.7025787965616046, 'number': 809}      | {'precision': 0.23809523809523808, 'recall': 0.21008403361344538, 'f1': 0.22321428571428573, 'number': 119} | {'precision': 0.7216666666666667, 'recall': 0.8131455399061033, 'f1': 0.7646799116997792, 'number': 1065}    | 0.6711            | 0.7546         | 0.7104     | 0.7961           |
| 0.4695        | 10.0  | 100  | 0.6680          | {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809}     | {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} | {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065}     | 0.6751            | 0.7536         | 0.7122     | 0.7957           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3