joeljoseph1599 commited on
Commit
a07478b
1 Parent(s): fe552d0

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.7040
20
- - Answer: {'precision': 0.6568109820485745, 'recall': 0.7688504326328801, 'f1': 0.7084282460136675, 'number': 809}
21
- - Header: {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119}
22
- - Question: {'precision': 0.7009113504556752, 'recall': 0.7943661971830986, 'f1': 0.744718309859155, 'number': 1065}
23
- - Overall Precision: 0.6625
24
- - Overall Recall: 0.7516
25
- - Overall F1: 0.7043
26
- - Overall Accuracy: 0.7902
27
 
28
  ## Model description
29
 
@@ -54,16 +54,16 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8156 | 1.0 | 10 | 1.6000 | {'precision': 0.016967126193001062, 'recall': 0.019777503090234856, 'f1': 0.0182648401826484, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.19947159841479525, 'recall': 0.14178403755868543, 'f1': 0.16575192096597147, 'number': 1065} | 0.0982 | 0.0838 | 0.0904 | 0.3885 |
58
- | 1.4929 | 2.0 | 20 | 1.2928 | {'precision': 0.2471213463241807, 'recall': 0.34487021013597036, 'f1': 0.2879256965944273, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.37381275440976935, 'recall': 0.5173708920187794, 'f1': 0.43402914533280823, 'number': 1065} | 0.3189 | 0.4165 | 0.3612 | 0.5918 |
59
- | 1.1481 | 3.0 | 30 | 1.0078 | {'precision': 0.37816979051819183, 'recall': 0.42398022249690975, 'f1': 0.3997668997668998, 'number': 809} | {'precision': 0.14705882352941177, 'recall': 0.04201680672268908, 'f1': 0.06535947712418301, 'number': 119} | {'precision': 0.5541346973572038, 'recall': 0.6103286384976526, 'f1': 0.580875781948168, 'number': 1065} | 0.4721 | 0.5008 | 0.4860 | 0.6646 |
60
- | 0.9026 | 4.0 | 40 | 0.8847 | {'precision': 0.5041322314049587, 'recall': 0.6786155747836835, 'f1': 0.5785036880927291, 'number': 809} | {'precision': 0.16, 'recall': 0.06722689075630252, 'f1': 0.09467455621301775, 'number': 119} | {'precision': 0.6154513888888888, 'recall': 0.6657276995305165, 'f1': 0.6396030672079386, 'number': 1065} | 0.5526 | 0.6352 | 0.5910 | 0.7209 |
61
- | 0.7479 | 5.0 | 50 | 0.7907 | {'precision': 0.6089324618736384, 'recall': 0.6909765142150803, 'f1': 0.6473653734800232, 'number': 809} | {'precision': 0.23076923076923078, 'recall': 0.15126050420168066, 'f1': 0.18274111675126906, 'number': 119} | {'precision': 0.6239600665557404, 'recall': 0.704225352112676, 'f1': 0.6616674018526687, 'number': 1065} | 0.6037 | 0.6658 | 0.6333 | 0.7576 |
62
- | 0.651 | 6.0 | 60 | 0.7416 | {'precision': 0.604040404040404, 'recall': 0.7391841779975278, 'f1': 0.6648137854363535, 'number': 809} | {'precision': 0.20238095238095238, 'recall': 0.14285714285714285, 'f1': 0.16748768472906403, 'number': 119} | {'precision': 0.6520376175548589, 'recall': 0.7812206572769953, 'f1': 0.7108073472874841, 'number': 1065} | 0.6157 | 0.7260 | 0.6664 | 0.7732 |
63
- | 0.5864 | 7.0 | 70 | 0.7379 | {'precision': 0.6485355648535565, 'recall': 0.7663782447466008, 'f1': 0.7025495750708215, 'number': 809} | {'precision': 0.22772277227722773, 'recall': 0.19327731092436976, 'f1': 0.2090909090909091, 'number': 119} | {'precision': 0.7006861063464837, 'recall': 0.7671361502347418, 'f1': 0.7324069923800985, 'number': 1065} | 0.6568 | 0.7326 | 0.6926 | 0.7746 |
64
- | 0.5425 | 8.0 | 80 | 0.7093 | {'precision': 0.6484210526315789, 'recall': 0.761433868974042, 'f1': 0.7003979533826037, 'number': 809} | {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} | {'precision': 0.6843800322061192, 'recall': 0.7981220657276995, 'f1': 0.7368877329865627, 'number': 1065} | 0.6496 | 0.7496 | 0.6960 | 0.7901 |
65
- | 0.4986 | 9.0 | 90 | 0.7080 | {'precision': 0.6553911205073996, 'recall': 0.7663782447466008, 'f1': 0.7065527065527065, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.25210084033613445, 'f1': 0.26785714285714285, 'number': 119} | {'precision': 0.7062761506276151, 'recall': 0.7924882629107981, 'f1': 0.7469026548672565, 'number': 1065} | 0.6652 | 0.7496 | 0.7049 | 0.7881 |
66
- | 0.481 | 10.0 | 100 | 0.7040 | {'precision': 0.6568109820485745, 'recall': 0.7688504326328801, 'f1': 0.7084282460136675, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7009113504556752, 'recall': 0.7943661971830986, 'f1': 0.744718309859155, 'number': 1065} | 0.6625 | 0.7516 | 0.7043 | 0.7902 |
67
 
68
 
69
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.6680
20
+ - Answer: {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809}
21
+ - Header: {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119}
22
+ - Question: {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065}
23
+ - Overall Precision: 0.6751
24
+ - Overall Recall: 0.7536
25
+ - Overall F1: 0.7122
26
+ - Overall Accuracy: 0.7957
27
 
28
  ## Model description
29
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.8904 | 1.0 | 10 | 1.6569 | {'precision': 0.0226628895184136, 'recall': 0.029666254635352288, 'f1': 0.025695931477516063, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.13233724653148346, 'recall': 0.11643192488262911, 'f1': 0.12387612387612387, 'number': 1065} | 0.074 | 0.0743 | 0.0741 | 0.3562 |
58
+ | 1.5103 | 2.0 | 20 | 1.3215 | {'precision': 0.16376306620209058, 'recall': 0.17428924598269468, 'f1': 0.1688622754491018, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.37047970479704795, 'recall': 0.47136150234741786, 'f1': 0.4148760330578512, 'number': 1065} | 0.2902 | 0.3226 | 0.3055 | 0.5678 |
59
+ | 1.1593 | 3.0 | 30 | 0.9985 | {'precision': 0.45689655172413796, 'recall': 0.5241038318912238, 'f1': 0.4881980426021877, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5746268656716418, 'recall': 0.6507042253521127, 'f1': 0.6103038309114928, 'number': 1065} | 0.5176 | 0.5605 | 0.5382 | 0.6952 |
60
+ | 0.8944 | 4.0 | 40 | 0.8291 | {'precision': 0.5676982591876208, 'recall': 0.7255871446229913, 'f1': 0.6370048833423766, 'number': 809} | {'precision': 0.125, 'recall': 0.05042016806722689, 'f1': 0.07185628742514971, 'number': 119} | {'precision': 0.648323301805675, 'recall': 0.707981220657277, 'f1': 0.6768402154398564, 'number': 1065} | 0.6 | 0.6759 | 0.6357 | 0.7440 |
61
+ | 0.7344 | 5.0 | 50 | 0.7416 | {'precision': 0.6231422505307855, 'recall': 0.7255871446229913, 'f1': 0.670474014848658, 'number': 809} | {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119} | {'precision': 0.6871794871794872, 'recall': 0.7549295774647887, 'f1': 0.7194630872483222, 'number': 1065} | 0.6419 | 0.7070 | 0.6729 | 0.7718 |
62
+ | 0.6312 | 6.0 | 60 | 0.7028 | {'precision': 0.616956077630235, 'recall': 0.7466007416563659, 'f1': 0.6756152125279643, 'number': 809} | {'precision': 0.2413793103448276, 'recall': 0.17647058823529413, 'f1': 0.2038834951456311, 'number': 119} | {'precision': 0.7020033388981636, 'recall': 0.7896713615023474, 'f1': 0.7432611577551921, 'number': 1065} | 0.6475 | 0.7356 | 0.6887 | 0.7880 |
63
+ | 0.5603 | 7.0 | 70 | 0.6980 | {'precision': 0.6331550802139038, 'recall': 0.7317676143386898, 'f1': 0.6788990825688073, 'number': 809} | {'precision': 0.2604166666666667, 'recall': 0.21008403361344538, 'f1': 0.23255813953488375, 'number': 119} | {'precision': 0.6994219653179191, 'recall': 0.7953051643192488, 'f1': 0.7442882249560634, 'number': 1065} | 0.6530 | 0.7346 | 0.6914 | 0.7861 |
64
+ | 0.5272 | 8.0 | 80 | 0.6733 | {'precision': 0.6592827004219409, 'recall': 0.7725587144622992, 'f1': 0.7114399544678428, 'number': 809} | {'precision': 0.25, 'recall': 0.20168067226890757, 'f1': 0.22325581395348837, 'number': 119} | {'precision': 0.7175188600167645, 'recall': 0.8037558685446009, 'f1': 0.758193091231178, 'number': 1065} | 0.6728 | 0.7551 | 0.7116 | 0.7927 |
65
+ | 0.4849 | 9.0 | 90 | 0.6716 | {'precision': 0.6549145299145299, 'recall': 0.757725587144623, 'f1': 0.7025787965616046, 'number': 809} | {'precision': 0.23809523809523808, 'recall': 0.21008403361344538, 'f1': 0.22321428571428573, 'number': 119} | {'precision': 0.7216666666666667, 'recall': 0.8131455399061033, 'f1': 0.7646799116997792, 'number': 1065} | 0.6711 | 0.7546 | 0.7104 | 0.7961 |
66
+ | 0.4695 | 10.0 | 100 | 0.6680 | {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809} | {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} | {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065} | 0.6751 | 0.7536 | 0.7122 | 0.7957 |
67
 
68
 
69
  ### Framework versions
logs/events.out.tfevents.1690807831.762bcd528089.9286.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d2293d3f8f717f4a7bb2d711ac7b732ebd5d8667becf07729f877cc121626fc
3
- size 10788
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bce2e92794202976e434db43e5bf71d81fb9023702ead9873f965da6b3060af1
3
+ size 11136