joeljoseph1599
commited on
Commit
•
a07478b
1
Parent(s):
fe552d0
End of training
Browse files
README.md
CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Answer: {'precision': 0.
|
21 |
-
- Header: {'precision': 0.
|
22 |
-
- Question: {'precision': 0.
|
23 |
-
- Overall Precision: 0.
|
24 |
-
- Overall Recall: 0.
|
25 |
-
- Overall F1: 0.
|
26 |
-
- Overall Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -54,16 +54,16 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
|
68 |
|
69 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6680
|
20 |
+
- Answer: {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809}
|
21 |
+
- Header: {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119}
|
22 |
+
- Question: {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065}
|
23 |
+
- Overall Precision: 0.6751
|
24 |
+
- Overall Recall: 0.7536
|
25 |
+
- Overall F1: 0.7122
|
26 |
+
- Overall Accuracy: 0.7957
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 1.8904 | 1.0 | 10 | 1.6569 | {'precision': 0.0226628895184136, 'recall': 0.029666254635352288, 'f1': 0.025695931477516063, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.13233724653148346, 'recall': 0.11643192488262911, 'f1': 0.12387612387612387, 'number': 1065} | 0.074 | 0.0743 | 0.0741 | 0.3562 |
|
58 |
+
| 1.5103 | 2.0 | 20 | 1.3215 | {'precision': 0.16376306620209058, 'recall': 0.17428924598269468, 'f1': 0.1688622754491018, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.37047970479704795, 'recall': 0.47136150234741786, 'f1': 0.4148760330578512, 'number': 1065} | 0.2902 | 0.3226 | 0.3055 | 0.5678 |
|
59 |
+
| 1.1593 | 3.0 | 30 | 0.9985 | {'precision': 0.45689655172413796, 'recall': 0.5241038318912238, 'f1': 0.4881980426021877, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5746268656716418, 'recall': 0.6507042253521127, 'f1': 0.6103038309114928, 'number': 1065} | 0.5176 | 0.5605 | 0.5382 | 0.6952 |
|
60 |
+
| 0.8944 | 4.0 | 40 | 0.8291 | {'precision': 0.5676982591876208, 'recall': 0.7255871446229913, 'f1': 0.6370048833423766, 'number': 809} | {'precision': 0.125, 'recall': 0.05042016806722689, 'f1': 0.07185628742514971, 'number': 119} | {'precision': 0.648323301805675, 'recall': 0.707981220657277, 'f1': 0.6768402154398564, 'number': 1065} | 0.6 | 0.6759 | 0.6357 | 0.7440 |
|
61 |
+
| 0.7344 | 5.0 | 50 | 0.7416 | {'precision': 0.6231422505307855, 'recall': 0.7255871446229913, 'f1': 0.670474014848658, 'number': 809} | {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119} | {'precision': 0.6871794871794872, 'recall': 0.7549295774647887, 'f1': 0.7194630872483222, 'number': 1065} | 0.6419 | 0.7070 | 0.6729 | 0.7718 |
|
62 |
+
| 0.6312 | 6.0 | 60 | 0.7028 | {'precision': 0.616956077630235, 'recall': 0.7466007416563659, 'f1': 0.6756152125279643, 'number': 809} | {'precision': 0.2413793103448276, 'recall': 0.17647058823529413, 'f1': 0.2038834951456311, 'number': 119} | {'precision': 0.7020033388981636, 'recall': 0.7896713615023474, 'f1': 0.7432611577551921, 'number': 1065} | 0.6475 | 0.7356 | 0.6887 | 0.7880 |
|
63 |
+
| 0.5603 | 7.0 | 70 | 0.6980 | {'precision': 0.6331550802139038, 'recall': 0.7317676143386898, 'f1': 0.6788990825688073, 'number': 809} | {'precision': 0.2604166666666667, 'recall': 0.21008403361344538, 'f1': 0.23255813953488375, 'number': 119} | {'precision': 0.6994219653179191, 'recall': 0.7953051643192488, 'f1': 0.7442882249560634, 'number': 1065} | 0.6530 | 0.7346 | 0.6914 | 0.7861 |
|
64 |
+
| 0.5272 | 8.0 | 80 | 0.6733 | {'precision': 0.6592827004219409, 'recall': 0.7725587144622992, 'f1': 0.7114399544678428, 'number': 809} | {'precision': 0.25, 'recall': 0.20168067226890757, 'f1': 0.22325581395348837, 'number': 119} | {'precision': 0.7175188600167645, 'recall': 0.8037558685446009, 'f1': 0.758193091231178, 'number': 1065} | 0.6728 | 0.7551 | 0.7116 | 0.7927 |
|
65 |
+
| 0.4849 | 9.0 | 90 | 0.6716 | {'precision': 0.6549145299145299, 'recall': 0.757725587144623, 'f1': 0.7025787965616046, 'number': 809} | {'precision': 0.23809523809523808, 'recall': 0.21008403361344538, 'f1': 0.22321428571428573, 'number': 119} | {'precision': 0.7216666666666667, 'recall': 0.8131455399061033, 'f1': 0.7646799116997792, 'number': 1065} | 0.6711 | 0.7546 | 0.7104 | 0.7961 |
|
66 |
+
| 0.4695 | 10.0 | 100 | 0.6680 | {'precision': 0.6523109243697479, 'recall': 0.7676143386897404, 'f1': 0.7052810902896083, 'number': 809} | {'precision': 0.23300970873786409, 'recall': 0.20168067226890757, 'f1': 0.21621621621621623, 'number': 119} | {'precision': 0.7324786324786324, 'recall': 0.8046948356807512, 'f1': 0.766890380313199, 'number': 1065} | 0.6751 | 0.7536 | 0.7122 | 0.7957 |
|
67 |
|
68 |
|
69 |
### Framework versions
|
logs/events.out.tfevents.1690807831.762bcd528089.9286.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bce2e92794202976e434db43e5bf71d81fb9023702ead9873f965da6b3060af1
|
3 |
+
size 11136
|