Fine-Tuned Agglomerative Token Clustering - DeiT-Base-Complete - ImageNet-1k

Model Details

Agglomerative Token Clustering (ATC), a novel hierarchical hard-merging based token reduction method.

  • Developed by: Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, and Thomas B. Moeslund
  • Model type: Vision Transformer
  • License: MIT
  • Task: Image Classification

Model Card

  • Backbone: DeiT-Base
  • Token Reduction Method: ATC
  • Linkage Function: Complete
  • Reduction Ratio: {0.25, 0.5, 0.7, 0.9}
  • Reduction Stages: 3, 6, 9

More Resources

Use

The model files contain both standard and EMA model parameters. The version which gave the best performance is indicated with the "ema_best" boolean.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.