whisper-large-v2-atcosim

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0552
  • Wer: 9.9694

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 12500

Training results

Training Loss Epoch Step Validation Loss Wer
0.0038 8.33 1000 0.0357 2.7829
0.001 16.67 2000 0.0384 2.0004
0.0015 25.0 3000 0.0373 31.7142
0.0001 33.33 4000 0.0437 2.3152
0.0019 41.67 5000 0.0446 7.2375
0.0 50.0 6000 0.0462 2.9033
0.0 58.33 7000 0.0490 4.3295
0.0 66.67 8000 0.0509 5.8668
0.0 75.0 9000 0.0524 7.5014
0.0 83.33 10000 0.0536 8.6405
0.0 91.67 11000 0.0546 9.5018
0.0 100.0 12000 0.0552 9.9694

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
25
Safetensors
Model size
1.54B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.