Edit model card

whisper-large-v2-atco2-asr

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7915
  • Wer: 18.7722

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2800

Training results

Training Loss Epoch Step Validation Loss Wer
0.1333 3.57 100 0.5298 21.8861
0.0338 7.14 200 0.5430 18.8167
0.0132 10.71 300 0.5830 17.9270
0.0067 14.29 400 0.6011 17.6157
0.0009 17.86 500 0.6582 18.8167
0.0004 21.43 600 0.6743 18.7722
0.0003 25.0 700 0.6919 18.4609
0.0004 28.57 800 0.6943 26.6459
0.0004 32.14 900 0.7090 18.5053
0.0002 35.71 1000 0.7212 18.8167
0.0001 39.29 1100 0.7305 18.8612
0.0001 42.86 1200 0.7383 18.6388
0.0001 46.43 1300 0.7451 18.5498
0.0001 50.0 1400 0.7515 18.5498
0.0001 53.57 1500 0.7573 18.5498
0.0001 57.14 1600 0.7622 18.5943
0.0001 60.71 1700 0.7666 18.5943
0.0001 64.29 1800 0.7705 18.5498
0.0001 67.86 1900 0.7744 18.6833
0.0001 71.43 2000 0.7778 18.6833
0.0001 75.0 2100 0.7808 18.7278
0.0001 78.57 2200 0.7837 18.6833
0.0001 82.14 2300 0.7856 18.6388
0.0001 85.71 2400 0.7881 18.6833
0.0001 89.29 2500 0.7896 18.6388
0.0001 92.86 2600 0.7905 18.7278
0.0001 96.43 2700 0.7915 18.8167
0.0001 100.0 2800 0.7915 18.7722

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
16
Safetensors
Model size
1.54B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.