distilBert_NER_finer
This model is a fine-tuned version of distilbert-base-cased on the Finer-139 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0198
- Precision: 0.9445
- Recall: 0.9640
- F1: 0.9541
- Accuracy: 0.9954
Training and evaluation data
The training data consists of the 4 most widely available ner_tags from the Finer-139 dataset. The training and the test data were curated from this source accordingly
Prediction procedure
from transformers import TAutoTokenizer
from optimum.onnxruntime import ORTModelForTokenClassification
import torch
def onnx_inference(checkpoint, test_data, export=False):
test_text = " ".join(test_data['tokens'])
print("Test Text: " + test_text)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = ORTModelForTokenClassification.from_pretrained(checkpoint, export=export)
inputs = tokenizer(test_text, return_tensors="pt")
outputs = model(**inputs).logits
predictions = torch.argmax(outputs, dim=2)
# Convert each tensor element to a scalar before calling .item()
predicted_token_class = [label_list[int(t)] for t in predictions[0]]
ner_tags = [label_list[int(t)] for t in test_data['ner_tags']]
print("Original Tags: ")
print(ner_tags)
print("Predicted Tags: ")
print(predicted_token_class)
onnx_model_path = "" #add the path
onnx_inference(onnx_model_path, test_data)
"""
Here the test_data should contain "tokens" and "ner_tags". This can be of type Dataset.
"""
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0034 | 1.0 | 1620 | 0.0261 | 0.9167 | 0.9668 | 0.9411 | 0.9941 |
0.0031 | 2.0 | 3240 | 0.0182 | 0.9471 | 0.9651 | 0.9561 | 0.9956 |
0.0012 | 3.0 | 4860 | 0.0198 | 0.9445 | 0.9640 | 0.9541 | 0.9954 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jishnunair/distilBert_NER_finer
Base model
distilbert/distilbert-base-cased