Upload handler.py
#1
by
deepsi122
- opened
- handler.py +46 -0
handler.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
# check for GPU
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler:
|
11 |
+
def __init__(self, path=""):
|
12 |
+
# load the model
|
13 |
+
self.processor = DonutProcessor.from_pretrained(path)
|
14 |
+
self.model = VisionEncoderDecoderModel.from_pretrained(path)
|
15 |
+
# move model to device
|
16 |
+
self.model.to(device)
|
17 |
+
self.decoder_input_ids = self.processor.tokenizer(
|
18 |
+
"<s_cord-v2>", add_special_tokens=False, return_tensors="pt"
|
19 |
+
).input_ids
|
20 |
+
|
21 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
22 |
+
|
23 |
+
inputs = data.pop("inputs", data)
|
24 |
+
|
25 |
+
|
26 |
+
# preprocess the input
|
27 |
+
pixel_values = self.processor(inputs, return_tensors="pt").pixel_values
|
28 |
+
|
29 |
+
# forward pass
|
30 |
+
outputs = self.model.generate(
|
31 |
+
pixel_values.to(device),
|
32 |
+
decoder_input_ids=self.decoder_input_ids.to(device),
|
33 |
+
max_length=self.model.decoder.config.max_position_embeddings,
|
34 |
+
early_stopping=True,
|
35 |
+
pad_token_id=self.processor.tokenizer.pad_token_id,
|
36 |
+
eos_token_id=self.processor.tokenizer.eos_token_id,
|
37 |
+
use_cache=True,
|
38 |
+
num_beams=1,
|
39 |
+
bad_words_ids=[[self.processor.tokenizer.unk_token_id]],
|
40 |
+
return_dict_in_generate=True,
|
41 |
+
)
|
42 |
+
# process output
|
43 |
+
prediction = self.processor.batch_decode(outputs.sequences)[0]
|
44 |
+
prediction = self.processor.token2json(prediction)
|
45 |
+
|
46 |
+
return prediction
|