tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
inference: false
license: apache-2.0
language:
- en
- zh
model-index:
- name: jina-embeddings-v2-base-zh
results:
- task:
type: STS
dataset:
type: C-MTEB/AFQMC
name: MTEB AFQMC
config: default
split: validation
revision: None
metrics:
- type: cos_sim_pearson
value: 48.51403119231363
- type: cos_sim_spearman
value: 50.5928547846445
- type: euclidean_pearson
value: 48.750436310559074
- type: euclidean_spearman
value: 50.50950238691385
- type: manhattan_pearson
value: 48.7866189440328
- type: manhattan_spearman
value: 50.58692402017165
- task:
type: STS
dataset:
type: C-MTEB/ATEC
name: MTEB ATEC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 50.25985700105725
- type: cos_sim_spearman
value: 51.28815934593989
- type: euclidean_pearson
value: 52.70329248799904
- type: euclidean_spearman
value: 50.94101139559258
- type: manhattan_pearson
value: 52.6647237400892
- type: manhattan_spearman
value: 50.922441325406176
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 34.944
- type: f1
value: 34.06478860660109
- task:
type: STS
dataset:
type: C-MTEB/BQ
name: MTEB BQ
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 65.15667035488342
- type: cos_sim_spearman
value: 66.07110142081
- type: euclidean_pearson
value: 60.447598102249714
- type: euclidean_spearman
value: 61.826575796578766
- type: manhattan_pearson
value: 60.39364279354984
- type: manhattan_spearman
value: 61.78743491223281
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringP2P
name: MTEB CLSClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 39.96714175391701
- task:
type: Clustering
dataset:
type: C-MTEB/CLSClusteringS2S
name: MTEB CLSClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 38.39863566717934
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 83.63680381780644
- type: mrr
value: 86.16476190476192
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 83.74350667859487
- type: mrr
value: 86.10388888888889
- task:
type: Retrieval
dataset:
type: C-MTEB/CmedqaRetrieval
name: MTEB CmedqaRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.072
- type: map_at_10
value: 32.942
- type: map_at_100
value: 34.768
- type: map_at_1000
value: 34.902
- type: map_at_3
value: 29.357
- type: map_at_5
value: 31.236000000000004
- type: mrr_at_1
value: 34.259
- type: mrr_at_10
value: 41.957
- type: mrr_at_100
value: 42.982
- type: mrr_at_1000
value: 43.042
- type: mrr_at_3
value: 39.722
- type: mrr_at_5
value: 40.898
- type: ndcg_at_1
value: 34.259
- type: ndcg_at_10
value: 39.153
- type: ndcg_at_100
value: 46.493
- type: ndcg_at_1000
value: 49.01
- type: ndcg_at_3
value: 34.636
- type: ndcg_at_5
value: 36.278
- type: precision_at_1
value: 34.259
- type: precision_at_10
value: 8.815000000000001
- type: precision_at_100
value: 1.474
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 19.73
- type: precision_at_5
value: 14.174000000000001
- type: recall_at_1
value: 22.072
- type: recall_at_10
value: 48.484
- type: recall_at_100
value: 79.035
- type: recall_at_1000
value: 96.15
- type: recall_at_3
value: 34.607
- type: recall_at_5
value: 40.064
- task:
type: PairClassification
dataset:
type: C-MTEB/CMNLI
name: MTEB Cmnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 76.7047504509922
- type: cos_sim_ap
value: 85.26649874800871
- type: cos_sim_f1
value: 78.13528724646915
- type: cos_sim_precision
value: 71.57587548638132
- type: cos_sim_recall
value: 86.01823708206688
- type: dot_accuracy
value: 70.13830426939266
- type: dot_ap
value: 77.01510412382171
- type: dot_f1
value: 73.56710042713817
- type: dot_precision
value: 63.955094991364426
- type: dot_recall
value: 86.57937806873977
- type: euclidean_accuracy
value: 75.53818400481059
- type: euclidean_ap
value: 84.34668448241264
- type: euclidean_f1
value: 77.51741608613047
- type: euclidean_precision
value: 70.65614777756399
- type: euclidean_recall
value: 85.85457096095394
- type: manhattan_accuracy
value: 75.49007817197835
- type: manhattan_ap
value: 84.40297506704299
- type: manhattan_f1
value: 77.63185324160932
- type: manhattan_precision
value: 70.03949595636637
- type: manhattan_recall
value: 87.07037643207856
- type: max_accuracy
value: 76.7047504509922
- type: max_ap
value: 85.26649874800871
- type: max_f1
value: 78.13528724646915
- task:
type: Retrieval
dataset:
type: C-MTEB/CovidRetrieval
name: MTEB CovidRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 69.178
- type: map_at_10
value: 77.523
- type: map_at_100
value: 77.793
- type: map_at_1000
value: 77.79899999999999
- type: map_at_3
value: 75.878
- type: map_at_5
value: 76.849
- type: mrr_at_1
value: 69.44200000000001
- type: mrr_at_10
value: 77.55
- type: mrr_at_100
value: 77.819
- type: mrr_at_1000
value: 77.826
- type: mrr_at_3
value: 75.957
- type: mrr_at_5
value: 76.916
- type: ndcg_at_1
value: 69.44200000000001
- type: ndcg_at_10
value: 81.217
- type: ndcg_at_100
value: 82.45
- type: ndcg_at_1000
value: 82.636
- type: ndcg_at_3
value: 77.931
- type: ndcg_at_5
value: 79.655
- type: precision_at_1
value: 69.44200000000001
- type: precision_at_10
value: 9.357
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 28.1
- type: precision_at_5
value: 17.724
- type: recall_at_1
value: 69.178
- type: recall_at_10
value: 92.624
- type: recall_at_100
value: 98.209
- type: recall_at_1000
value: 99.684
- type: recall_at_3
value: 83.772
- type: recall_at_5
value: 87.882
- task:
type: Retrieval
dataset:
type: C-MTEB/DuRetrieval
name: MTEB DuRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 25.163999999999998
- type: map_at_10
value: 76.386
- type: map_at_100
value: 79.339
- type: map_at_1000
value: 79.39500000000001
- type: map_at_3
value: 52.959
- type: map_at_5
value: 66.59
- type: mrr_at_1
value: 87.9
- type: mrr_at_10
value: 91.682
- type: mrr_at_100
value: 91.747
- type: mrr_at_1000
value: 91.751
- type: mrr_at_3
value: 91.267
- type: mrr_at_5
value: 91.527
- type: ndcg_at_1
value: 87.9
- type: ndcg_at_10
value: 84.569
- type: ndcg_at_100
value: 87.83800000000001
- type: ndcg_at_1000
value: 88.322
- type: ndcg_at_3
value: 83.473
- type: ndcg_at_5
value: 82.178
- type: precision_at_1
value: 87.9
- type: precision_at_10
value: 40.605000000000004
- type: precision_at_100
value: 4.752
- type: precision_at_1000
value: 0.488
- type: precision_at_3
value: 74.9
- type: precision_at_5
value: 62.96000000000001
- type: recall_at_1
value: 25.163999999999998
- type: recall_at_10
value: 85.97399999999999
- type: recall_at_100
value: 96.63000000000001
- type: recall_at_1000
value: 99.016
- type: recall_at_3
value: 55.611999999999995
- type: recall_at_5
value: 71.936
- task:
type: Retrieval
dataset:
type: C-MTEB/EcomRetrieval
name: MTEB EcomRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 48.6
- type: map_at_10
value: 58.831
- type: map_at_100
value: 59.427
- type: map_at_1000
value: 59.44199999999999
- type: map_at_3
value: 56.383
- type: map_at_5
value: 57.753
- type: mrr_at_1
value: 48.6
- type: mrr_at_10
value: 58.831
- type: mrr_at_100
value: 59.427
- type: mrr_at_1000
value: 59.44199999999999
- type: mrr_at_3
value: 56.383
- type: mrr_at_5
value: 57.753
- type: ndcg_at_1
value: 48.6
- type: ndcg_at_10
value: 63.951
- type: ndcg_at_100
value: 66.72200000000001
- type: ndcg_at_1000
value: 67.13900000000001
- type: ndcg_at_3
value: 58.882
- type: ndcg_at_5
value: 61.373
- type: precision_at_1
value: 48.6
- type: precision_at_10
value: 8.01
- type: precision_at_100
value: 0.928
- type: precision_at_1000
value: 0.096
- type: precision_at_3
value: 22.033
- type: precision_at_5
value: 14.44
- type: recall_at_1
value: 48.6
- type: recall_at_10
value: 80.10000000000001
- type: recall_at_100
value: 92.80000000000001
- type: recall_at_1000
value: 96.1
- type: recall_at_3
value: 66.10000000000001
- type: recall_at_5
value: 72.2
- task:
type: Classification
dataset:
type: C-MTEB/IFlyTek-classification
name: MTEB IFlyTek
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 47.36437091188918
- type: f1
value: 36.60946954228577
- task:
type: Classification
dataset:
type: C-MTEB/JDReview-classification
name: MTEB JDReview
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 79.5684803001876
- type: ap
value: 42.671935929201524
- type: f1
value: 73.31912729103752
- task:
type: STS
dataset:
type: C-MTEB/LCQMC
name: MTEB LCQMC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 68.62670112113864
- type: cos_sim_spearman
value: 75.74009123170768
- type: euclidean_pearson
value: 73.93002595958237
- type: euclidean_spearman
value: 75.35222935003587
- type: manhattan_pearson
value: 73.89870445158144
- type: manhattan_spearman
value: 75.31714936339398
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 31.5372713650176
- type: mrr
value: 30.163095238095238
- task:
type: Retrieval
dataset:
type: C-MTEB/MMarcoRetrieval
name: MTEB MMarcoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 65.054
- type: map_at_10
value: 74.156
- type: map_at_100
value: 74.523
- type: map_at_1000
value: 74.535
- type: map_at_3
value: 72.269
- type: map_at_5
value: 73.41
- type: mrr_at_1
value: 67.24900000000001
- type: mrr_at_10
value: 74.78399999999999
- type: mrr_at_100
value: 75.107
- type: mrr_at_1000
value: 75.117
- type: mrr_at_3
value: 73.13499999999999
- type: mrr_at_5
value: 74.13499999999999
- type: ndcg_at_1
value: 67.24900000000001
- type: ndcg_at_10
value: 77.96300000000001
- type: ndcg_at_100
value: 79.584
- type: ndcg_at_1000
value: 79.884
- type: ndcg_at_3
value: 74.342
- type: ndcg_at_5
value: 76.278
- type: precision_at_1
value: 67.24900000000001
- type: precision_at_10
value: 9.466
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 27.955999999999996
- type: precision_at_5
value: 17.817
- type: recall_at_1
value: 65.054
- type: recall_at_10
value: 89.113
- type: recall_at_100
value: 96.369
- type: recall_at_1000
value: 98.714
- type: recall_at_3
value: 79.45400000000001
- type: recall_at_5
value: 84.06
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.1977135171486
- type: f1
value: 67.23114308718404
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.92669804976462
- type: f1
value: 72.90628475628779
- task:
type: Retrieval
dataset:
type: C-MTEB/MedicalRetrieval
name: MTEB MedicalRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 49.2
- type: map_at_10
value: 54.539
- type: map_at_100
value: 55.135
- type: map_at_1000
value: 55.19199999999999
- type: map_at_3
value: 53.383
- type: map_at_5
value: 54.142999999999994
- type: mrr_at_1
value: 49.2
- type: mrr_at_10
value: 54.539
- type: mrr_at_100
value: 55.135999999999996
- type: mrr_at_1000
value: 55.19199999999999
- type: mrr_at_3
value: 53.383
- type: mrr_at_5
value: 54.142999999999994
- type: ndcg_at_1
value: 49.2
- type: ndcg_at_10
value: 57.123000000000005
- type: ndcg_at_100
value: 60.21300000000001
- type: ndcg_at_1000
value: 61.915
- type: ndcg_at_3
value: 54.772
- type: ndcg_at_5
value: 56.157999999999994
- type: precision_at_1
value: 49.2
- type: precision_at_10
value: 6.52
- type: precision_at_100
value: 0.8009999999999999
- type: precision_at_1000
value: 0.094
- type: precision_at_3
value: 19.6
- type: precision_at_5
value: 12.44
- type: recall_at_1
value: 49.2
- type: recall_at_10
value: 65.2
- type: recall_at_100
value: 80.10000000000001
- type: recall_at_1000
value: 93.89999999999999
- type: recall_at_3
value: 58.8
- type: recall_at_5
value: 62.2
- task:
type: Classification
dataset:
type: C-MTEB/MultilingualSentiment-classification
name: MTEB MultilingualSentiment
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 63.29333333333334
- type: f1
value: 63.03293854259612
- task:
type: PairClassification
dataset:
type: C-MTEB/OCNLI
name: MTEB Ocnli
config: default
split: validation
revision: None
metrics:
- type: cos_sim_accuracy
value: 75.69030860855442
- type: cos_sim_ap
value: 80.6157833772759
- type: cos_sim_f1
value: 77.87524366471735
- type: cos_sim_precision
value: 72.3076923076923
- type: cos_sim_recall
value: 84.37170010559663
- type: dot_accuracy
value: 67.78559826746074
- type: dot_ap
value: 72.00871467527499
- type: dot_f1
value: 72.58722247394654
- type: dot_precision
value: 63.57142857142857
- type: dot_recall
value: 84.58289334741288
- type: euclidean_accuracy
value: 75.20303194369248
- type: euclidean_ap
value: 80.98587256415605
- type: euclidean_f1
value: 77.26396917148362
- type: euclidean_precision
value: 71.03631532329496
- type: euclidean_recall
value: 84.68848996832101
- type: manhattan_accuracy
value: 75.20303194369248
- type: manhattan_ap
value: 80.93460699513219
- type: manhattan_f1
value: 77.124773960217
- type: manhattan_precision
value: 67.43083003952569
- type: manhattan_recall
value: 90.07391763463569
- type: max_accuracy
value: 75.69030860855442
- type: max_ap
value: 80.98587256415605
- type: max_f1
value: 77.87524366471735
- task:
type: Classification
dataset:
type: C-MTEB/OnlineShopping-classification
name: MTEB OnlineShopping
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 87.00000000000001
- type: ap
value: 83.24372135949511
- type: f1
value: 86.95554191530607
- task:
type: STS
dataset:
type: C-MTEB/PAWSX
name: MTEB PAWSX
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 37.57616811591219
- type: cos_sim_spearman
value: 41.490259084930045
- type: euclidean_pearson
value: 38.9155043692188
- type: euclidean_spearman
value: 39.16056534305623
- type: manhattan_pearson
value: 38.76569892264335
- type: manhattan_spearman
value: 38.99891685590743
- task:
type: STS
dataset:
type: C-MTEB/QBQTC
name: MTEB QBQTC
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 35.44858610359665
- type: cos_sim_spearman
value: 38.11128146262466
- type: euclidean_pearson
value: 31.928644189822457
- type: euclidean_spearman
value: 34.384936631696554
- type: manhattan_pearson
value: 31.90586687414376
- type: manhattan_spearman
value: 34.35770153777186
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 66.54931957553592
- type: cos_sim_spearman
value: 69.25068863016632
- type: euclidean_pearson
value: 50.26525596106869
- type: euclidean_spearman
value: 63.83352741910006
- type: manhattan_pearson
value: 49.98798282198196
- type: manhattan_spearman
value: 63.87649521907841
- task:
type: STS
dataset:
type: C-MTEB/STSB
name: MTEB STSB
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 82.52782476625825
- type: cos_sim_spearman
value: 82.55618986168398
- type: euclidean_pearson
value: 78.48190631687673
- type: euclidean_spearman
value: 78.39479731354655
- type: manhattan_pearson
value: 78.51176592165885
- type: manhattan_spearman
value: 78.42363787303265
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 67.36693873615643
- type: mrr
value: 77.83847701797939
- task:
type: Retrieval
dataset:
type: C-MTEB/T2Retrieval
name: MTEB T2Retrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 25.795
- type: map_at_10
value: 72.258
- type: map_at_100
value: 76.049
- type: map_at_1000
value: 76.134
- type: map_at_3
value: 50.697
- type: map_at_5
value: 62.324999999999996
- type: mrr_at_1
value: 86.634
- type: mrr_at_10
value: 89.792
- type: mrr_at_100
value: 89.91900000000001
- type: mrr_at_1000
value: 89.923
- type: mrr_at_3
value: 89.224
- type: mrr_at_5
value: 89.608
- type: ndcg_at_1
value: 86.634
- type: ndcg_at_10
value: 80.589
- type: ndcg_at_100
value: 84.812
- type: ndcg_at_1000
value: 85.662
- type: ndcg_at_3
value: 82.169
- type: ndcg_at_5
value: 80.619
- type: precision_at_1
value: 86.634
- type: precision_at_10
value: 40.389
- type: precision_at_100
value: 4.93
- type: precision_at_1000
value: 0.513
- type: precision_at_3
value: 72.104
- type: precision_at_5
value: 60.425
- type: recall_at_1
value: 25.795
- type: recall_at_10
value: 79.565
- type: recall_at_100
value: 93.24799999999999
- type: recall_at_1000
value: 97.595
- type: recall_at_3
value: 52.583999999999996
- type: recall_at_5
value: 66.175
- task:
type: Classification
dataset:
type: C-MTEB/TNews-classification
name: MTEB TNews
config: default
split: validation
revision: None
metrics:
- type: accuracy
value: 47.648999999999994
- type: f1
value: 46.28925837008413
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringP2P
name: MTEB ThuNewsClusteringP2P
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 54.07641891287953
- task:
type: Clustering
dataset:
type: C-MTEB/ThuNewsClusteringS2S
name: MTEB ThuNewsClusteringS2S
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 53.423702062353954
- task:
type: Retrieval
dataset:
type: C-MTEB/VideoRetrieval
name: MTEB VideoRetrieval
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 55.7
- type: map_at_10
value: 65.923
- type: map_at_100
value: 66.42
- type: map_at_1000
value: 66.431
- type: map_at_3
value: 63.9
- type: map_at_5
value: 65.225
- type: mrr_at_1
value: 55.60000000000001
- type: mrr_at_10
value: 65.873
- type: mrr_at_100
value: 66.36999999999999
- type: mrr_at_1000
value: 66.381
- type: mrr_at_3
value: 63.849999999999994
- type: mrr_at_5
value: 65.17500000000001
- type: ndcg_at_1
value: 55.7
- type: ndcg_at_10
value: 70.621
- type: ndcg_at_100
value: 72.944
- type: ndcg_at_1000
value: 73.25399999999999
- type: ndcg_at_3
value: 66.547
- type: ndcg_at_5
value: 68.93599999999999
- type: precision_at_1
value: 55.7
- type: precision_at_10
value: 8.52
- type: precision_at_100
value: 0.958
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 24.733
- type: precision_at_5
value: 16
- type: recall_at_1
value: 55.7
- type: recall_at_10
value: 85.2
- type: recall_at_100
value: 95.8
- type: recall_at_1000
value: 98.3
- type: recall_at_3
value: 74.2
- type: recall_at_5
value: 80
- task:
type: Classification
dataset:
type: C-MTEB/waimai-classification
name: MTEB Waimai
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 84.54
- type: ap
value: 66.13603199670062
- type: f1
value: 82.61420654584116
The text embedding set trained by Jina AI.
Quick Start
The easiest way to starting using jina-embeddings-v2-base-zh
is to use Jina AI's Embedding API.
Intended Usage & Model Info
jina-embeddings-v2-base-zh
is a Chinese/English bilingual text embedding model supporting 8192 sequence length.
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of ALiBi to allow longer sequence length.
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Chinese-English input without bias.
Additionally, we provide the following embedding models:
jina-embeddings-v2-base-zh
是支持中英双语的文本向量模型,它支持长达8192字符的文本编码。
该模型的研发基于BERT架构(JinaBERT),JinaBERT是在BERT架构基础上的改进,首次将ALiBi应用到编码器架构中以支持更长的序列。
不同于以往的单语言/多语言向量模型,我们设计双语模型来更好的支持单语言(中搜中)以及跨语言(中搜英)文档检索。
除此之外,我们也提供其它向量模型:
jina-embeddings-v2-small-en
: 33 million parameters.jina-embeddings-v2-base-en
: 137 million parameters.jina-embeddings-v2-base-zh
: 161 million parameters Chinese-English Bilingual embeddings (you are here).jina-embeddings-v2-base-de
: 161 million parameters German-English Bilingual embeddings.jina-embeddings-v2-base-es
: Spanish-English Bilingual embeddings (soon).
Data & Parameters
We will publish a report with technical details about the training of the bilingual models soon. The training of the English model is described in this technical report.
Usage
Please apply mean pooling when integrating the model.
Why mean pooling?
mean poooling
takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an encode
function to deal with this.
However, if you would like to do it without using the default encode
function:
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['How is the weather today?', '今天天气怎么样?']
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-zh')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
You can use Jina Embedding models directly from transformers package.
First, you need to make sure that you are logged into huggingface. You can either use the huggingface-cli tool (after installing the transformers
package) and pass your hugginface access token:
huggingface-cli login
Alternatively, you can provide the access token as an environment variable in the shell:
export HF_TOKEN="<your token here>"
or in Python:
import os
os.environ['HF_TOKEN'] = "<your token here>"
Then, you can use load and use the model via the AutoModel
class:
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True) # trust_remote_code is needed to use the encode method
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
print(cos_sim(embeddings[0], embeddings[1]))
If you only want to handle shorter sequence, such as 2k, pass the max_length
parameter to the encode
function:
embeddings = model.encode(
['Very long ... document'],
max_length=2048
)
If you want to use the model together with the sentence-transformers package, make sure that you have installed the latest release and set trust_remote_code=True
as well:
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = SentenceTransformer('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
print(cos_sim(embeddings[0], embeddings[1]))
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
"jinaai/jina-embeddings-v2-base-de", # switch to en/zh for English or Chinese
trust_remote_code=True
)
# control your input sequence length up to 8192
model.max_seq_length = 1024
embeddings = model.encode([
'How is the weather today?',
'Wie ist das Wetter heute?'
])
print(cos_sim(embeddings[0], embeddings[1]))
Alternatives to Using Transformers Package
- Managed SaaS: Get started with a free key on Jina AI's Embedding API.
- Private and high-performance deployment: Get started by picking from our suite of models and deploy them on AWS Sagemaker.
Use Jina Embeddings for RAG
According to the latest blog post from LLamaIndex,
In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
Trouble Shooting
Loading of Model Code failed
If you forgot to pass the trust_remote_code=True
flag when calling AutoModel.from_pretrained
or initializing the model via the SentenceTransformer
class, you will receive an error that the model weights could not be initialized.
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
Contact
Join our Discord community and chat with other community members about ideas.
Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
@misc{günther2023jina,
title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
year={2023},
eprint={2310.19923},
archivePrefix={arXiv},
primaryClass={cs.CL}
}