File size: 9,625 Bytes
56fe6da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import re
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel, PretrainedConfig
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
)
"""
HF architecture mapping
"""
_HF_ARCH_DICT = {
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
'roberta': {
'config_names': {
'context_length': 'max_position_embeddings',
'vocab_size': 'vocab_size',
'width': 'hidden_size',
'heads': 'num_attention_heads',
'layers': 'num_hidden_layers',
'layer_attr': 'layer',
'token_embeddings_attr': 'embeddings',
},
'pooler': 'mean_pooler',
},
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
'xlm-roberta': {
'config_names': {
'context_length': 'max_position_embeddings',
'vocab_size': 'vocab_size',
'width': 'hidden_size',
'heads': 'num_attention_heads',
'layers': 'num_hidden_layers',
'layer_attr': 'layer',
'token_embeddings_attr': 'embeddings',
},
'pooler': 'mean_pooler',
},
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
'mt5': {
'config_names': {
# unlimited seqlen
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
'context_length': '',
'vocab_size': 'vocab_size',
'width': 'd_model',
'heads': 'num_heads',
'layers': 'num_layers',
'layer_attr': 'block',
'token_embeddings_attr': 'embed_tokens',
},
'pooler': 'mean_pooler',
},
# https://huggingface.co/docs/transformers/model_doc/bert
'bert': {
'config_names': {
'context_length': 'max_position_embeddings',
'vocab_size': 'vocab_size',
'width': 'hidden_size',
'heads': 'num_attention_heads',
'layers': 'num_hidden_layers',
},
'pooler': 'cls_pooler',
},
# https://huggingface.co/docs/transformers/model_doc/m2m_100
'm2m_100': {
'config_names': {
'context_length': 'max_position_embeddings',
'vocab_size': 'vocab_size',
'width': 'd_model',
'heads': 'encoder_attention_heads',
'layers': 'encoder_layers',
},
'pooler': 'cls_pooler',
},
}
"""
Pooling functions
"""
_POOLERS = {}
def _camel2snake(s):
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
def register_pooler(cls):
"""Decorator registering pooler class"""
_POOLERS[_camel2snake(cls.__name__)] = cls
return cls
@register_pooler
class MeanPooler(nn.Module):
"""Mean pooling"""
@staticmethod
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
@register_pooler
class MaxPooler(nn.Module):
"""
Max pooling
"""
@staticmethod
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
masked_output = x.last_hidden_state.masked_fill(
attention_mask.unsqueeze(-1), -torch.inf
)
return masked_output.max(1).values
@register_pooler
class ClsPooler(nn.Module):
"""
CLS token pooling
"""
def __init__(self, use_pooler_output=True):
super().__init__()
self.cls_token_position = 0
self.use_pooler_output = use_pooler_output
def forward(self, x: BaseModelOutput, _: torch.Tensor):
if (
self.use_pooler_output
and isinstance(
x,
(
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
),
)
and (x.pooler_output is not None)
):
return x.pooler_output
return x.last_hidden_state[:, self.cls_token_position, :]
"""
HF text model
"""
class HFTextEncoder(nn.Module):
output_tokens: torch.jit.Final[bool]
def __init__(
self,
model_name_or_path: str,
output_dim: int,
config: PretrainedConfig = None,
pooler_type: str = None,
proj_type: str = None,
proj_bias: bool = False,
pretrained: bool = True,
output_tokens: bool = False,
trust_remote_code: bool = False,
revision: Optional[str] = None,
model_config_kwargs: Optional[Dict] = None,
):
super().__init__()
self.output_tokens = output_tokens
self.output_dim = output_dim
# TODO: find better way to get this information
uses_transformer_pooler = pooler_type == 'cls_pooler'
model_config_kwargs = model_config_kwargs or {}
if config is None:
self.config = AutoConfig.from_pretrained(
model_name_or_path,
trust_remote_code=trust_remote_code,
code_revision=revision,
)
self.config.update(model_config_kwargs)
create_func, model_args = (
(AutoModel.from_pretrained, model_name_or_path)
if pretrained
else (AutoModel.from_config, self.config)
)
# TODO: do all model configs have this attribute?
# PretrainedConfig does so yes??
if (
hasattr(self.config, 'is_encoder_decoder')
and self.config.is_encoder_decoder
):
self.transformer = create_func(model_args)
self.transformer = self.transformer.encoder
else:
self.transformer = create_func(
model_args,
trust_remote_code=trust_remote_code,
add_pooling_layer=uses_transformer_pooler,
code_revision=revision,
)
else:
self.config = config
self.config.update(model_config_kwargs)
self.transformer = AutoModel.from_config(self.config)
if pooler_type is None: # get default arch pooler
pooler_type = _HF_ARCH_DICT[self.config.model_type]['pooler']
# FIXME downstream users of OpenCLIP models use these attr,
# need to verify valid across all models
self.vocab_size = getattr(self.config, 'vocab_size', 0)
self.context_length = getattr(self.config, 'max_position_embeddings', 0)
self.pooler = _POOLERS[pooler_type]()
d_model = getattr(
self.config, _HF_ARCH_DICT[self.config.model_type]['config_names']['width']
)
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
self.proj = nn.Identity()
elif proj_type == 'linear':
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
elif proj_type == 'mlp':
hidden_size = (d_model + output_dim) // 2
self.proj = nn.Sequential(
nn.Linear(d_model, hidden_size, bias=proj_bias),
nn.GELU(),
nn.Linear(hidden_size, output_dim, bias=proj_bias),
)
def forward(self, x: torch.Tensor):
attn_mask = (x != self.config.pad_token_id).long()
out = self.transformer(input_ids=x, attention_mask=attn_mask)
pooled_out = self.pooler(out, attn_mask)
projected = self.proj(pooled_out)
seq_len = out.last_hidden_state.shape[1]
tokens = (
out.last_hidden_state[
:, torch.arange(seq_len) != self.pooler.cls_token_position, :
]
if isinstance(self.pooler, ClsPooler)
else out.last_hidden_state
)
if self.output_tokens:
return projected, tokens
return projected
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
if not unlocked_layers: # full freezing
for n, p in self.transformer.named_parameters():
p.requires_grad = (
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
)
return
encoder = (
self.transformer.encoder
if hasattr(self.transformer, 'encoder')
else self.transformer
)
layer_list = getattr(
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
)
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
embeddings = getattr(
self.transformer,
_HF_ARCH_DICT[self.config.model_type]['config_names'][
'token_embeddings_attr'
],
)
modules = [embeddings, *layer_list][:-unlocked_layers]
# freeze layers
for module in modules:
for n, p in module.named_parameters():
p.requires_grad = (
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
)
@torch.jit.ignore
def set_grad_checkpointing(self, _=True):
self.transformer.gradient_checkpointing_enable()
def init_parameters(self):
pass
|