File size: 14,084 Bytes
56fe6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import re
from typing import Dict, Optional, Tuple

import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModel, PretrainedConfig
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    BaseModelOutputWithPoolingAndCrossAttentions,
)

"""
HF architecture mapping
"""

_HF_ARCH_DICT = {
    # https://huggingface.co/docs/transformers/model_doc/roberta#roberta
    'roberta': {
        'config_names': {
            'context_length': 'max_position_embeddings',
            'vocab_size': 'vocab_size',
            'width': 'hidden_size',
            'heads': 'num_attention_heads',
            'layers': 'num_hidden_layers',
            'layer_attr': 'layer',
            'token_embeddings_attr': 'embeddings',
        },
        'pooler': 'mean_pooler',
    },
    # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
    'xlm-roberta': {
        'config_names': {
            'context_length': 'max_position_embeddings',
            'vocab_size': 'vocab_size',
            'width': 'hidden_size',
            'heads': 'num_attention_heads',
            'layers': 'num_hidden_layers',
            'layer_attr': 'layer',
            'token_embeddings_attr': 'embeddings',
        },
        'pooler': 'mean_pooler',
    },
    # https://huggingface.co/docs/transformers/model_doc/mt5#mt5
    'mt5': {
        'config_names': {
            # unlimited seqlen
            # https://github.com/google-research/text-to-text-transfer-transformer/issues/273
            # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
            'context_length': '',
            'vocab_size': 'vocab_size',
            'width': 'd_model',
            'heads': 'num_heads',
            'layers': 'num_layers',
            'layer_attr': 'block',
            'token_embeddings_attr': 'embed_tokens',
        },
        'pooler': 'mean_pooler',
    },
    # https://huggingface.co/docs/transformers/model_doc/bert
    'bert': {
        'config_names': {
            'context_length': 'max_position_embeddings',
            'vocab_size': 'vocab_size',
            'width': 'hidden_size',
            'heads': 'num_attention_heads',
            'layers': 'num_hidden_layers',
        },
        'pooler': 'cls_pooler',
    },
    # https://huggingface.co/docs/transformers/model_doc/m2m_100
    'm2m_100': {
        'config_names': {
            'context_length': 'max_position_embeddings',
            'vocab_size': 'vocab_size',
            'width': 'd_model',
            'heads': 'encoder_attention_heads',
            'layers': 'encoder_layers',
        },
        'pooler': 'cls_pooler',
    },
}


"""
Pooling functions
"""

_POOLERS = {}


def _camel2snake(s):
    return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()


def register_pooler(cls):
    """Decorator registering pooler class"""
    _POOLERS[_camel2snake(cls.__name__)] = cls
    return cls


@register_pooler
class MeanPooler(nn.Module):
    """Mean pooling"""

    @staticmethod
    def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
        masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
        return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)


@register_pooler
class MaxPooler(nn.Module):
    """
    Max pooling
    """

    @staticmethod
    def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
        masked_output = x.last_hidden_state.masked_fill(
            attention_mask.unsqueeze(-1), -torch.inf
        )
        return masked_output.max(1).values


@register_pooler
class ClsPooler(nn.Module):
    """
    CLS token pooling
    """

    def __init__(self, use_pooler_output=True):
        super().__init__()
        self.cls_token_position = 0
        self.use_pooler_output = use_pooler_output

    def forward(self, x: BaseModelOutput, _: torch.Tensor):
        if (
            self.use_pooler_output
            and isinstance(
                x,
                (
                    BaseModelOutputWithPooling,
                    BaseModelOutputWithPoolingAndCrossAttentions,
                ),
            )
            and (x.pooler_output is not None)
        ):
            return x.pooler_output

        return x.last_hidden_state[:, self.cls_token_position, :]


"""
HF text model
"""


class HFTextEncoder(nn.Module):
    output_tokens: torch.jit.Final[bool]

    def __init__(
        self,
        model_name_or_path: str,
        output_dim: int,
        config: PretrainedConfig = None,
        pooler_type: str = None,
        proj_type: str = None,
        proj_bias: bool = False,
        pretrained: bool = True,
        output_tokens: bool = False,
        trust_remote_code: bool = False,
        revision: Optional[str] = None,
        model_config_kwargs: Optional[Dict] = None,
    ):
        super().__init__()
        self.output_tokens = output_tokens
        self.output_dim = output_dim

        # TODO: find better way to get this information
        uses_transformer_pooler = pooler_type == 'cls_pooler'
        model_config_kwargs = model_config_kwargs or {}

        if config is None:
            self.config = AutoConfig.from_pretrained(
                model_name_or_path,
                trust_remote_code=trust_remote_code,
                code_revision=revision,
            )
            self.config.update(model_config_kwargs)
            create_func, model_args = (
                (AutoModel.from_pretrained, model_name_or_path)
                if pretrained
                else (AutoModel.from_config, self.config)
            )
            # TODO: do all model configs have this attribute?
            #  PretrainedConfig does so yes??
            if (
                hasattr(self.config, 'is_encoder_decoder')
                and self.config.is_encoder_decoder
            ):
                self.transformer = create_func(model_args)
                self.transformer = self.transformer.encoder
            else:
                self.transformer = create_func(
                    model_args,
                    trust_remote_code=trust_remote_code,
                    add_pooling_layer=uses_transformer_pooler,
                    code_revision=revision,
                )
        else:
            self.config = config
            self.config.update(model_config_kwargs)
            self.transformer = AutoModel.from_config(self.config)

        if pooler_type is None:  # get default arch pooler
            pooler_type = _HF_ARCH_DICT[self.config.model_type]['pooler']

        # FIXME downstream users of OpenCLIP models use these attr,
        #  need to verify valid across all models
        self.vocab_size = getattr(self.config, 'vocab_size', 0)
        self.context_length = getattr(self.config, 'max_position_embeddings', 0)

        self.pooler = _POOLERS[pooler_type]()

        d_model = getattr(
            self.config, _HF_ARCH_DICT[self.config.model_type]['config_names']['width']
        )
        if (d_model == output_dim) and (proj_type is None):  # do we always need a proj?
            self.proj = nn.Identity()
        elif proj_type == 'linear':
            self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
        elif proj_type == 'mlp':
            hidden_size = (d_model + output_dim) // 2
            self.proj = nn.Sequential(
                nn.Linear(d_model, hidden_size, bias=proj_bias),
                nn.GELU(),
                nn.Linear(hidden_size, output_dim, bias=proj_bias),
            )

    def forward(self, x: torch.Tensor):
        attn_mask = (x != self.config.pad_token_id).long()
        out = self.transformer(input_ids=x, attention_mask=attn_mask)
        pooled_out = self.pooler(out, attn_mask)
        projected = self.proj(pooled_out)

        seq_len = out.last_hidden_state.shape[1]
        tokens = (
            out.last_hidden_state[
                :, torch.arange(seq_len) != self.pooler.cls_token_position, :
            ]
            if isinstance(self.pooler, ClsPooler)
            else out.last_hidden_state
        )

        if self.output_tokens:
            return projected, tokens
        return projected

    def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
        if not unlocked_layers:  # full freezing
            for n, p in self.transformer.named_parameters():
                p.requires_grad = (
                    (not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
                )
            return

        encoder = (
            self.transformer.encoder
            if hasattr(self.transformer, 'encoder')
            else self.transformer
        )
        layer_list = getattr(
            encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
        )
        print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
        embeddings = getattr(
            self.transformer,
            _HF_ARCH_DICT[self.config.model_type]['config_names'][
                'token_embeddings_attr'
            ],
        )
        modules = [embeddings, *layer_list][:-unlocked_layers]
        # freeze layers
        for module in modules:
            for n, p in module.named_parameters():
                p.requires_grad = (
                    (not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
                )

    @torch.jit.ignore
    def set_grad_checkpointing(self, _=True):
        self.transformer.gradient_checkpointing_enable()

    def init_parameters(self):
        pass


"""
HF vision model
"""


class HFVisionEncoder(nn.Module):
    output_tokens: torch.jit.Final[bool]

    def __init__(
        self,
        model_name_or_path: str,
        image_size: int,
        output_dim: int,
        config: PretrainedConfig = None,
        pool_type: str = 'tok',
        proj_type: Optional[str] = None,
        proj_bias: bool = False,
        attn_drop: float = 0.0,
        hidden_drop: float = 0.0,
        drop_path: Optional[float] = None,
        pretrained: bool = True,
        output_tokens: bool = False,
        trust_remote_code: bool = False,
    ):
        super().__init__()
        self.output_tokens = output_tokens
        self.output_dim = output_dim
        self.image_size = (image_size, image_size)

        if config is None:
            self.config = AutoConfig.from_pretrained(
                model_name_or_path,
                trust_remote_code=trust_remote_code,
                hidden_dropout_prob=hidden_drop,
                attention_probs_dropout_prob=attn_drop,
                drop_path_rate=drop_path,
            )
            create_func, model_args = (
                (AutoModel.from_pretrained, model_name_or_path)
                if pretrained
                else (AutoModel.from_config, self.config)
            )
            self.transformer = create_func(
                model_args,
                trust_remote_code=trust_remote_code,
                hidden_dropout_prob=hidden_drop,
                attention_probs_dropout_prob=attn_drop,
            )
        else:
            self.config = config
            self.transformer = AutoModel.from_config(config)

        if 'dinov2' in model_name_or_path:
            self.transformer.embeddings.mask_token.requires_grad = False

        assert pool_type in ('tok', 'avg', 'none')
        self.pool_type = pool_type

        d_model = self.config.hidden_size
        if (d_model == output_dim) and (proj_type is None):  # do we always need a proj?
            self.proj = nn.Identity()
        elif proj_type == 'linear':
            self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
        elif proj_type == 'mlp':
            hidden_size = (d_model + output_dim) // 2
            self.proj = nn.Sequential(
                nn.Linear(d_model, hidden_size, bias=proj_bias),
                nn.GELU(),
                nn.Linear(hidden_size, output_dim, bias=proj_bias),
            )

    def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.pool_type == 'avg':
            pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
        elif self.pool_type == 'tok':
            pooled, tokens = x[:, 0], x[:, 1:]
        else:
            pooled = tokens = x

        return pooled, tokens

    def forward(self, x: torch.Tensor):
        # returns a tuple of (final hidden states, token pooled outputs)
        x = self.transformer(x)[0]
        pooled, tokens = self._global_pool(x)
        projected = self.proj(pooled)

        return projected

    def lock(self, unlocked_layers: int = 0, freeze_bn_stats: bool = True):
        if not unlocked_layers:  # full freezing
            for n, p in self.transformer.named_parameters():
                p.requires_grad = (
                    (not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False
                )
            return

        # TODO: make it work if unlocked_layers !=0
        encoder = (
            self.transformer.encoder
            if hasattr(self.transformer, 'encoder')
            else self.transformer
        )
        layer_list = getattr(
            encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
        )
        print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
        embeddings = getattr(
            self.transformer,
            _HF_ARCH_DICT[self.config.model_type]['config_names'][
                'token_embeddings_attr'
            ],
        )
        modules = [embeddings, *layer_list][:-unlocked_layers]
        # freeze layers
        for module in modules:
            for n, p in module.named_parameters():
                p.requires_grad = (
                    (not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False
                )

    @torch.jit.ignore
    def set_grad_checkpointing(self, *_, **__):
        self.transformer.gradient_checkpointing_enable()

    def init_parameters(self):
        pass