File size: 2,853 Bytes
0f4baa3 0fea72a 0f4baa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: cifar10_outputs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.991421568627451
- task:
type: image-classification
name: Image Classification
dataset:
name: cifar10
type: cifar10
config: plain_text
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9674
verified: true
- name: Precision Macro
type: precision
value: 0.9679512973887299
verified: true
- name: Precision Micro
type: precision
value: 0.9674
verified: true
- name: Precision Weighted
type: precision
value: 0.9679512973887299
verified: true
- name: Recall Macro
type: recall
value: 0.9673999999999999
verified: true
- name: Recall Micro
type: recall
value: 0.9674
verified: true
- name: Recall Weighted
type: recall
value: 0.9674
verified: true
- name: F1 Macro
type: f1
value: 0.9674620969256708
verified: true
- name: F1 Micro
type: f1
value: 0.9674000000000001
verified: true
- name: F1 Weighted
type: f1
value: 0.967462096925671
verified: true
- name: loss
type: loss
value: 0.1527363657951355
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cifar10_outputs
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0806
- Accuracy: 0.9914
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 17
- eval_batch_size: 17
- seed: 1337
- distributed_type: IPU
- gradient_accumulation_steps: 128
- total_train_batch_size: 8704
- total_eval_batch_size: 272
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 100.0
- training precision: Mixed Precision
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cpu
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1
|