File size: 14,398 Bytes
a03db54
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fba90938dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba90938e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba90938ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba90938f70>", "_build": "<function ActorCriticPolicy._build at 0x7fba9093b040>", "forward": "<function ActorCriticPolicy.forward at 0x7fba9093b0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba9093b160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fba9093b1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba9093b280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba9093b310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba9093b3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba90bc3f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659071008.8834145, "learning_rate": 0.00096, "tensorboard_log": "work_dirs/AntBulletEnv-v0/tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHOjRb74ehu/bS20PjjtUb73pIK9ej2zvdBxtb7Ct1g/WAVMP2XLLzyvmSe/HBIVu2Ag1D7CFI2/YvHvvtpCvj/iK7g/RzLbPMxr176yqXE+GIhYv3u75L18t36+xtSwuvpn/T5uvO0+riTuPjmswj75YSI+abCpv+fLnb5MQQq+DrX2vGrjTT5gvry+WA4tv1D9YD9Xkh68J+aSvRadirwmKpy/XFTPPMCf9z7626A92/6Hvkglq70Jfcc+cY7oPbefOz+RCqa9tFAZP1smOz36Z/0+brztPq4k7j45rMI+73y8Pz6RCb+2/8Y+PQo7QN1DI0ByXL2/3FViP68A6b6yv2E/MoTBveLWZj+LXRPA1Xq5P/e4ULs89Wa/+Bt8vuLBHr/VfL4/Jji5PnOdHb9grmC/htapPcoHeb5OiS8+aU8BwG687T4LmQnAOazCPjALFz+mpd69w3sHP4iMzz+QY+c/DTCcPqXQOL8oU60+3+5gP6zm/bs6Die/mgQXvRvRrrxeHgNAiuLpvRpz0r5pUCi+KmutPtYpnL+B7Wc/btnBP+3hG74nzaW9MU05P2lPAcBuvO0+riTuPjmswj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFlI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD37UPQAAAADlnADAAAAAAK8dDL4AAAAAeyP9PwAAAAACdJk9AAAAAL7S4D8AAAAAVc/TPAAAAAATpPe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbetgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLA7CT4AAAAATvvkvwAAAAAff629AAAAAJO2/D8AAAAArcz0vQAAAADDkfo/AAAAAPf/Ur0AAAAA/ODYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGr/ojYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAV63G8AAAAAF7K4r8AAAAA3DPePQAAAAAmff8/AAAAAIQqqT0AAAAAoyzqPwAAAAD9KJ66AAAAACG+AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0eJY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFjsHvgAAAACAeP+/AAAAADX+DD4AAAAAaNjbPwAAAABfc8o7AAAAAHdM4D8AAAAAL6G/PQAAAAAEE/u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIWUKS7oStiMAWyUTegDjAF0lEdAXD02tMfzSXV9lChoBkdAg4luYIBzWGgHTegDaAhHQFydxesxO+J1fZQoaAZHQAuOOCGvfTFoB0sUaAhHQFyjXSjQAuJ1fZQoaAZHQIjIW1D0DlpoB03oA2gIR0Bc2ld5Y5ktdX2UKGgGR0CHM1a24NI9aAdN6ANoCEdAXOaiO/+Kj3V9lChoBkdAiTgyxiXpn2gHTegDaAhHQF1Pko4MnZ11fZQoaAZHQIYXJXOnl4loB03oA2gIR0BdtfH5rP+odX2UKGgGR0CFCILNwBHTaAdN6ANoCEdAXe2s5n13+3V9lChoBkdAfCbMmWt2cWgHTegDaAhHQF36Fb3XZoR1fZQoaAZHQImp9yHVPN5oB03eA2gIR0BeYPGlyimEdX2UKGgGR0B4xDBFd9lVaAdN6ANoCEdAXstZGKAJ9nV9lChoBkdAiahKxC6YmmgHTegDaAhHQF8DefqX4TN1fZQoaAZHQHMi2+j/MntoB03oA2gIR0BfD9nGsFMadX2UKGgGR0CISSBZpztDaAdN6ANoCEdAX3WF8G9pRHV9lChoBkdAiHLx6Ww/xGgHTegDaAhHQF/drWRRuTB1fZQoaAZHQH48NZJTVDtoB03oA2gIR0BgCmoaUA1fdX2UKGgGR0CFhddAxBVuaAdN6ANoCEdAYBCCwr1/UnV9lChoBkdAhX98dgfEGmgHTegDaAhHQGBDUW2w3YN1fZQoaAZHQID1dIsiB5JoB03oA2gIR0Bgd1U83dbgdX2UKGgGR0CGs2GrS3LFaAdN6ANoCEdAYJMbG3nZCnV9lChoBkdAhegpbdJrcmgHTegDaAhHQGCZMg+yJKt1fZQoaAZHQIZ39DhLoOhoB03oA2gIR0BgzE41gpjMdX2UKGgGR0BJ7SY5T6zmaAdLUmgIR0Bg12Btk4FSdX2UKGgGR0CJEXybx3FDaAdN6ANoCEdAYQAGFBY3enV9lChoBkdAhWJ01ZTya2gHTegDaAhHQGEcpJPIn0F1fZQoaAZHQIcy+x2St/5oB03oA2gIR0BhIvC4z7/GdX2UKGgGR0CDY11X/5tWaAdN6ANoCEdAYWOuOjqOcXV9lChoBkdAh5yCiyprDmgHTegDaAhHQGGOBZ6lchV1fZQoaAZHQICm7obGWD9oB03oA2gIR0BhqsijcmBwdX2UKGgGR0CFCgi35N48aAdN6ANoCEdAYbEpe/pMYnV9lChoBkdAhGXKhtcfNmgHTegDaAhHQGHyZTyauwJ1fZQoaAZHQIEp5ULlV95oB03oA2gIR0BiHZqVQhwEdX2UKGgGR0B550b0e2d/aAdN6ANoCEdAYjrMqz7di3V9lChoBkdAiTPf0ulGgGgHTegDaAhHQGJBNmUW2w51fZQoaAZHQIsIyDPGACpoB03oA2gIR0BiglO/L1VYdX2UKGgGR0B6LnOqvNeMaAdN6ANoCEdAYqzlJ6IFeXV9lChoBkdAe6pR5kbxVmgHTegDaAhHQGLJgf+0gKZ1fZQoaAZHQIvy9j/dZaFoB03oA2gIR0Biz92/zreJdX2UKGgGR0B6UTTLGJemaAdN6ANoCEdAYxCt7rs0HnV9lChoBkdAfPIuxrzoU2gHTegDaAhHQGM7LIgeRxN1fZQoaAZHQFWjBZIQOFxoB0tkaAhHQGNJWVVxS511fZQoaAZHQH9+NM9KVY9oB03oA2gIR0BjV5xtHhCMdX2UKGgGR0B9dOtQsPJ8aAdN6ANoCEdAY13qrzXjEXV9lChoBkdAgHhb961LJ2gHTegDaAhHQGOelYdQwbl1fZQoaAZHQID4HoHLRrtoB03oA2gIR0Bj2A2/BWPtdX2UKGgGR0CF69ggHNX6aAdN6ANoCEdAY+ZxsEaESXV9lChoBkdAf+bva11GLGgHTegDaAhHQGPswz+FUQ11fZQoaAZHQFhD1ZTyauxoB0tsaAhHQGP1upbUwzt1fZQoaAZHQIaMtga3qiZoB03oA2gIR0BkLI+bExZddX2UKGgGR0CHWyO4oZydaAdN6ANoCEdAZGTkELYwqXV9lChoBkdAhlrEHUtqYmgHTegDaAhHQGR5ngHeJpF1fZQoaAZHQIiVq8BdUsFoB03oA2gIR0BkgpSJj2BbdX2UKGgGR0CB8BrGBFuvaAdN6ANoCEdAZLoajN6gNHV9lChoBkdAiaGMKb8WK2gHTegDaAhHQGTy0163RXx1fZQoaAZHQIMTApDu0C1oB03oA2gIR0BlB39kz41xdX2UKGgGR0CGPtBQemvXaAdN6ANoCEdAZRBmHP/rB3V9lChoBkdAhaOze40/GGgHTegDaAhHQGVHszuWrwR1fZQoaAZHQIRCiNhmXgNoB03oA2gIR0BlgIm/nGKidX2UKGgGR0CFyrtPYWcjaAdN6ANoCEdAZZUNEPUaynV9lChoBkdAhZI5mI0qIGgHTegDaAhHQGWd+Ofdykt1fZQoaAZHQIX+Gp84PwxoB03oA2gIR0Bl1X336AOKdX2UKGgGR0CFQMk1Mue0aAdN6ANoCEdAZg5uQ6p5vHV9lChoBkdAhrf0ornTzGgHTegDaAhHQGYjNr0rbxp1fZQoaAZHQIdbQyRB/qhoB03oA2gIR0BmLC2SdOIqdX2UKGgGR0CFeUXeFcptaAdN6ANoCEdAZmBguRLbpXV9lChoBkdAiOlYR28qWmgHTegDaAhHQGaU3BHkLhJ1fZQoaAZHQIyElwFTvRZoB03oA2gIR0BmqAV0tAcDdX2UKGgGR0CNP/K8L8aXaAdN6ANoCEdAZrBHvttygnV9lChoBkdAh20tmthd+2gHTegDaAhHQGbj/WUbDMx1fZQoaAZHQIg59Vea8YhoB03oA2gIR0BnGY//vOQhdX2UKGgGR0CHz3DQ7cO9aAdN6ANoCEdAZy00CzTnaHV9lChoBkdAiPj/AKv3amgHTegDaAhHQGc1vWQOnVJ1fZQoaAZHQIavo3YL9dhoB03oA2gIR0BnagyEcsDodX2UKGgGR0CEFYjgQ6IWaAdN6ANoCEdAZ5+/N7jT8nV9lChoBkdAiHAaR6nivWgHTegDaAhHQGezFmOEM9d1fZQoaAZHQIY+eT1TR6ZoB03oA2gIR0Bnu4EMb3oLdX2UKGgGR0CJG+voNd7faAdN6ANoCEdAZ+8nKnvUjXV9lChoBkdAiPzBBqsU7GgHTegDaAhHQGgjyn1nM+x1fZQoaAZHQIsRdd/rjYJoB03oA2gIR0BoN0CzTnaGdX2UKGgGR0CKIWy0KJEZaAdN6ANoCEdAaD+i3XqZ+nV9lChoBkdAhGXUtZmqYWgHTegDaAhHQGhzoegctGx1fZQoaAZHQIVVWRq46OpoB03oA2gIR0BoqKlk6LfldX2UKGgGR0CAKjUwztTlaAdN6ANoCEdAaLwvaDf3vnV9lChoBkdAiTZm8ujASGgHTegDaAhHQGjEt3OfNA11fZQoaAZHQIQG3TI/7i1oB03oA2gIR0Bo+HhbW3BpdX2UKGgGR0CASsax5cC6aAdN6ANoCEdAaS1a+vhZQ3V9lChoBkdAgHbB4t6HCWgHTegDaAhHQGlAeB6KLsN1fZQoaAZHQIOK8WVNYbNoB03oA2gIR0BpSMBfa6BidX2UKGgGR0CAmT9NN8E3aAdN6ANoCEdAaXv+VC5VfnV9lChoBkdAeRFYKpkwvmgHTegDaAhHQGmxFlbu+h51fZQoaAZHQIEzt/QSi/RoB03oA2gIR0BpxDv7WNFSdX2UKGgGR0CALqdiDujRaAdN6ANoCEdAacyHARChOHV9lChoBkdAg/9Gm1pj+mgHTegDaAhHQGn//779AHF1fZQoaAZHQIAVRmTTvy9oB03oA2gIR0BqNLHdXT3JdX2UKGgGR0CD8Sjps41haAdN6ANoCEdAakgZjx0+1XV9lChoBkdAiGGIkiUxEmgHTegDaAhHQGpQjGDL8rJ1fZQoaAZHQIMJg13t8eFoB03oA2gIR0BqhMXLvCuVdX2UKGgGR0CID10aqCHzaAdN6ANoCEdAarpy8SPEKnV9lChoBkdAgOfZpztCzGgHTegDaAhHQGrOHVXmvGJ1fZQoaAZHQIRP4Th5xBFoB03oA2gIR0Bq1pPbfxc3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu102", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}