Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- logs/a2c-AntBulletEnv-v0.zip +3 -0
- logs/tensorboard/A2C_1/events.out.tfevents.1659066037.rlcube.25123.0 +3 -0
- logs/tensorboard/A2C_2/events.out.tfevents.1659066077.rlcube.25589.0 +3 -0
- logs/tensorboard/A2C_3/events.out.tfevents.1659066147.rlcube.26627.0 +3 -0
- logs/tensorboard/A2C_4/events.out.tfevents.1659066270.rlcube.27292.0 +3 -0
- logs/tensorboard/A2C_5/events.out.tfevents.1659066388.rlcube.27802.0 +3 -0
- logs/tensorboard/A2C_6/events.out.tfevents.1659070176.rlcube.3780.0 +3 -0
- logs/tensorboard/A2C_7/events.out.tfevents.1659071008.rlcube.7361.0 +3 -0
- logs/vec_normalize.pkl +3 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 674.59 +/- 89.58
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a334797b7a020edd7dd13c0260047558df22b943a542f7f08a16cb6c5ea8db12
|
3 |
+
size 129108
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fba90938dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba90938e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba90938ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba90938f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fba9093b040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fba9093b0d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba9093b160>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fba9093b1f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba9093b280>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba9093b310>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba9093b3a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fba90bc3f00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 200000,
|
62 |
+
"_total_timesteps": 200000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1659071008.8834145,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "work_dirs/AntBulletEnv-v0/tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHOjRb74ehu/bS20PjjtUb73pIK9ej2zvdBxtb7Ct1g/WAVMP2XLLzyvmSe/HBIVu2Ag1D7CFI2/YvHvvtpCvj/iK7g/RzLbPMxr176yqXE+GIhYv3u75L18t36+xtSwuvpn/T5uvO0+riTuPjmswj75YSI+abCpv+fLnb5MQQq+DrX2vGrjTT5gvry+WA4tv1D9YD9Xkh68J+aSvRadirwmKpy/XFTPPMCf9z7626A92/6Hvkglq70Jfcc+cY7oPbefOz+RCqa9tFAZP1smOz36Z/0+brztPq4k7j45rMI+73y8Pz6RCb+2/8Y+PQo7QN1DI0ByXL2/3FViP68A6b6yv2E/MoTBveLWZj+LXRPA1Xq5P/e4ULs89Wa/+Bt8vuLBHr/VfL4/Jji5PnOdHb9grmC/htapPcoHeb5OiS8+aU8BwG687T4LmQnAOazCPjALFz+mpd69w3sHP4iMzz+QY+c/DTCcPqXQOL8oU60+3+5gP6zm/bs6Die/mgQXvRvRrrxeHgNAiuLpvRpz0r5pUCi+KmutPtYpnL+B7Wc/btnBP+3hG74nzaW9MU05P2lPAcBuvO0+riTuPjmswj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFlI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD37UPQAAAADlnADAAAAAAK8dDL4AAAAAeyP9PwAAAAACdJk9AAAAAL7S4D8AAAAAVc/TPAAAAAATpPe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbetgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLA7CT4AAAAATvvkvwAAAAAff629AAAAAJO2/D8AAAAArcz0vQAAAADDkfo/AAAAAPf/Ur0AAAAA/ODYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGr/ojYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAV63G8AAAAAF7K4r8AAAAA3DPePQAAAAAmff8/AAAAAIQqqT0AAAAAoyzqPwAAAAD9KJ66AAAAACG+AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0eJY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFjsHvgAAAACAeP+/AAAAADX+DD4AAAAAaNjbPwAAAABfc8o7AAAAAHdM4D8AAAAAL6G/PQAAAAAEE/u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIWUKS7oStiMAWyUTegDjAF0lEdAXD02tMfzSXV9lChoBkdAg4luYIBzWGgHTegDaAhHQFydxesxO+J1fZQoaAZHQAuOOCGvfTFoB0sUaAhHQFyjXSjQAuJ1fZQoaAZHQIjIW1D0DlpoB03oA2gIR0Bc2ld5Y5ktdX2UKGgGR0CHM1a24NI9aAdN6ANoCEdAXOaiO/+Kj3V9lChoBkdAiTgyxiXpn2gHTegDaAhHQF1Pko4MnZ11fZQoaAZHQIYXJXOnl4loB03oA2gIR0BdtfH5rP+odX2UKGgGR0CFCILNwBHTaAdN6ANoCEdAXe2s5n13+3V9lChoBkdAfCbMmWt2cWgHTegDaAhHQF36Fb3XZoR1fZQoaAZHQImp9yHVPN5oB03eA2gIR0BeYPGlyimEdX2UKGgGR0B4xDBFd9lVaAdN6ANoCEdAXstZGKAJ9nV9lChoBkdAiahKxC6YmmgHTegDaAhHQF8DefqX4TN1fZQoaAZHQHMi2+j/MntoB03oA2gIR0BfD9nGsFMadX2UKGgGR0CISSBZpztDaAdN6ANoCEdAX3WF8G9pRHV9lChoBkdAiHLx6Ww/xGgHTegDaAhHQF/drWRRuTB1fZQoaAZHQH48NZJTVDtoB03oA2gIR0BgCmoaUA1fdX2UKGgGR0CFhddAxBVuaAdN6ANoCEdAYBCCwr1/UnV9lChoBkdAhX98dgfEGmgHTegDaAhHQGBDUW2w3YN1fZQoaAZHQID1dIsiB5JoB03oA2gIR0Bgd1U83dbgdX2UKGgGR0CGs2GrS3LFaAdN6ANoCEdAYJMbG3nZCnV9lChoBkdAhegpbdJrcmgHTegDaAhHQGCZMg+yJKt1fZQoaAZHQIZ39DhLoOhoB03oA2gIR0BgzE41gpjMdX2UKGgGR0BJ7SY5T6zmaAdLUmgIR0Bg12Btk4FSdX2UKGgGR0CJEXybx3FDaAdN6ANoCEdAYQAGFBY3enV9lChoBkdAhWJ01ZTya2gHTegDaAhHQGEcpJPIn0F1fZQoaAZHQIcy+x2St/5oB03oA2gIR0BhIvC4z7/GdX2UKGgGR0CDY11X/5tWaAdN6ANoCEdAYWOuOjqOcXV9lChoBkdAh5yCiyprDmgHTegDaAhHQGGOBZ6lchV1fZQoaAZHQICm7obGWD9oB03oA2gIR0BhqsijcmBwdX2UKGgGR0CFCgi35N48aAdN6ANoCEdAYbEpe/pMYnV9lChoBkdAhGXKhtcfNmgHTegDaAhHQGHyZTyauwJ1fZQoaAZHQIEp5ULlV95oB03oA2gIR0BiHZqVQhwEdX2UKGgGR0B550b0e2d/aAdN6ANoCEdAYjrMqz7di3V9lChoBkdAiTPf0ulGgGgHTegDaAhHQGJBNmUW2w51fZQoaAZHQIsIyDPGACpoB03oA2gIR0BiglO/L1VYdX2UKGgGR0B6LnOqvNeMaAdN6ANoCEdAYqzlJ6IFeXV9lChoBkdAe6pR5kbxVmgHTegDaAhHQGLJgf+0gKZ1fZQoaAZHQIvy9j/dZaFoB03oA2gIR0Biz92/zreJdX2UKGgGR0B6UTTLGJemaAdN6ANoCEdAYxCt7rs0HnV9lChoBkdAfPIuxrzoU2gHTegDaAhHQGM7LIgeRxN1fZQoaAZHQFWjBZIQOFxoB0tkaAhHQGNJWVVxS511fZQoaAZHQH9+NM9KVY9oB03oA2gIR0BjV5xtHhCMdX2UKGgGR0B9dOtQsPJ8aAdN6ANoCEdAY13qrzXjEXV9lChoBkdAgHhb961LJ2gHTegDaAhHQGOelYdQwbl1fZQoaAZHQID4HoHLRrtoB03oA2gIR0Bj2A2/BWPtdX2UKGgGR0CF69ggHNX6aAdN6ANoCEdAY+ZxsEaESXV9lChoBkdAf+bva11GLGgHTegDaAhHQGPswz+FUQ11fZQoaAZHQFhD1ZTyauxoB0tsaAhHQGP1upbUwzt1fZQoaAZHQIaMtga3qiZoB03oA2gIR0BkLI+bExZddX2UKGgGR0CHWyO4oZydaAdN6ANoCEdAZGTkELYwqXV9lChoBkdAhlrEHUtqYmgHTegDaAhHQGR5ngHeJpF1fZQoaAZHQIiVq8BdUsFoB03oA2gIR0BkgpSJj2BbdX2UKGgGR0CB8BrGBFuvaAdN6ANoCEdAZLoajN6gNHV9lChoBkdAiaGMKb8WK2gHTegDaAhHQGTy0163RXx1fZQoaAZHQIMTApDu0C1oB03oA2gIR0BlB39kz41xdX2UKGgGR0CGPtBQemvXaAdN6ANoCEdAZRBmHP/rB3V9lChoBkdAhaOze40/GGgHTegDaAhHQGVHszuWrwR1fZQoaAZHQIRCiNhmXgNoB03oA2gIR0BlgIm/nGKidX2UKGgGR0CFyrtPYWcjaAdN6ANoCEdAZZUNEPUaynV9lChoBkdAhZI5mI0qIGgHTegDaAhHQGWd+Ofdykt1fZQoaAZHQIX+Gp84PwxoB03oA2gIR0Bl1X336AOKdX2UKGgGR0CFQMk1Mue0aAdN6ANoCEdAZg5uQ6p5vHV9lChoBkdAhrf0ornTzGgHTegDaAhHQGYjNr0rbxp1fZQoaAZHQIdbQyRB/qhoB03oA2gIR0BmLC2SdOIqdX2UKGgGR0CFeUXeFcptaAdN6ANoCEdAZmBguRLbpXV9lChoBkdAiOlYR28qWmgHTegDaAhHQGaU3BHkLhJ1fZQoaAZHQIyElwFTvRZoB03oA2gIR0BmqAV0tAcDdX2UKGgGR0CNP/K8L8aXaAdN6ANoCEdAZrBHvttygnV9lChoBkdAh20tmthd+2gHTegDaAhHQGbj/WUbDMx1fZQoaAZHQIg59Vea8YhoB03oA2gIR0BnGY//vOQhdX2UKGgGR0CHz3DQ7cO9aAdN6ANoCEdAZy00CzTnaHV9lChoBkdAiPj/AKv3amgHTegDaAhHQGc1vWQOnVJ1fZQoaAZHQIavo3YL9dhoB03oA2gIR0BnagyEcsDodX2UKGgGR0CEFYjgQ6IWaAdN6ANoCEdAZ5+/N7jT8nV9lChoBkdAiHAaR6nivWgHTegDaAhHQGezFmOEM9d1fZQoaAZHQIY+eT1TR6ZoB03oA2gIR0Bnu4EMb3oLdX2UKGgGR0CJG+voNd7faAdN6ANoCEdAZ+8nKnvUjXV9lChoBkdAiPzBBqsU7GgHTegDaAhHQGgjyn1nM+x1fZQoaAZHQIsRdd/rjYJoB03oA2gIR0BoN0CzTnaGdX2UKGgGR0CKIWy0KJEZaAdN6ANoCEdAaD+i3XqZ+nV9lChoBkdAhGXUtZmqYWgHTegDaAhHQGhzoegctGx1fZQoaAZHQIVVWRq46OpoB03oA2gIR0BoqKlk6LfldX2UKGgGR0CAKjUwztTlaAdN6ANoCEdAaLwvaDf3vnV9lChoBkdAiTZm8ujASGgHTegDaAhHQGjEt3OfNA11fZQoaAZHQIQG3TI/7i1oB03oA2gIR0Bo+HhbW3BpdX2UKGgGR0CASsax5cC6aAdN6ANoCEdAaS1a+vhZQ3V9lChoBkdAgHbB4t6HCWgHTegDaAhHQGlAeB6KLsN1fZQoaAZHQIOK8WVNYbNoB03oA2gIR0BpSMBfa6BidX2UKGgGR0CAmT9NN8E3aAdN6ANoCEdAaXv+VC5VfnV9lChoBkdAeRFYKpkwvmgHTegDaAhHQGmxFlbu+h51fZQoaAZHQIEzt/QSi/RoB03oA2gIR0BpxDv7WNFSdX2UKGgGR0CALqdiDujRaAdN6ANoCEdAacyHARChOHV9lChoBkdAg/9Gm1pj+mgHTegDaAhHQGn//779AHF1fZQoaAZHQIAVRmTTvy9oB03oA2gIR0BqNLHdXT3JdX2UKGgGR0CD8Sjps41haAdN6ANoCEdAakgZjx0+1XV9lChoBkdAiGGIkiUxEmgHTegDaAhHQGpQjGDL8rJ1fZQoaAZHQIMJg13t8eFoB03oA2gIR0BqhMXLvCuVdX2UKGgGR0CID10aqCHzaAdN6ANoCEdAarpy8SPEKnV9lChoBkdAgOfZpztCzGgHTegDaAhHQGrOHVXmvGJ1fZQoaAZHQIRP4Th5xBFoB03oA2gIR0Bq1pPbfxc3dWUu"
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 10000,
|
98 |
+
"n_steps": 5,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41d0ffdc42f497bf8205e06f6a9aee62d29ffdf0a03269338fcd2252ae2fcc5e
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb1ba11ebd59c86084a35a0d7785d1d9bcb0961034d58697da8c08f738727fa
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fba90938dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba90938e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba90938ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba90938f70>", "_build": "<function ActorCriticPolicy._build at 0x7fba9093b040>", "forward": "<function ActorCriticPolicy.forward at 0x7fba9093b0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba9093b160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fba9093b1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba9093b280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba9093b310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba9093b3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba90bc3f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659071008.8834145, "learning_rate": 0.00096, "tensorboard_log": "work_dirs/AntBulletEnv-v0/tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHOjRb74ehu/bS20PjjtUb73pIK9ej2zvdBxtb7Ct1g/WAVMP2XLLzyvmSe/HBIVu2Ag1D7CFI2/YvHvvtpCvj/iK7g/RzLbPMxr176yqXE+GIhYv3u75L18t36+xtSwuvpn/T5uvO0+riTuPjmswj75YSI+abCpv+fLnb5MQQq+DrX2vGrjTT5gvry+WA4tv1D9YD9Xkh68J+aSvRadirwmKpy/XFTPPMCf9z7626A92/6Hvkglq70Jfcc+cY7oPbefOz+RCqa9tFAZP1smOz36Z/0+brztPq4k7j45rMI+73y8Pz6RCb+2/8Y+PQo7QN1DI0ByXL2/3FViP68A6b6yv2E/MoTBveLWZj+LXRPA1Xq5P/e4ULs89Wa/+Bt8vuLBHr/VfL4/Jji5PnOdHb9grmC/htapPcoHeb5OiS8+aU8BwG687T4LmQnAOazCPjALFz+mpd69w3sHP4iMzz+QY+c/DTCcPqXQOL8oU60+3+5gP6zm/bs6Die/mgQXvRvRrrxeHgNAiuLpvRpz0r5pUCi+KmutPtYpnL+B7Wc/btnBP+3hG74nzaW9MU05P2lPAcBuvO0+riTuPjmswj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFlI22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD37UPQAAAADlnADAAAAAAK8dDL4AAAAAeyP9PwAAAAACdJk9AAAAAL7S4D8AAAAAVc/TPAAAAAATpPe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmbetgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLA7CT4AAAAATvvkvwAAAAAff629AAAAAJO2/D8AAAAArcz0vQAAAADDkfo/AAAAAPf/Ur0AAAAA/ODYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGr/ojYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAV63G8AAAAAF7K4r8AAAAA3DPePQAAAAAmff8/AAAAAIQqqT0AAAAAoyzqPwAAAAD9KJ66AAAAACG+AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0eJY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFjsHvgAAAACAeP+/AAAAADX+DD4AAAAAaNjbPwAAAABfc8o7AAAAAHdM4D8AAAAAL6G/PQAAAAAEE/u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIWUKS7oStiMAWyUTegDjAF0lEdAXD02tMfzSXV9lChoBkdAg4luYIBzWGgHTegDaAhHQFydxesxO+J1fZQoaAZHQAuOOCGvfTFoB0sUaAhHQFyjXSjQAuJ1fZQoaAZHQIjIW1D0DlpoB03oA2gIR0Bc2ld5Y5ktdX2UKGgGR0CHM1a24NI9aAdN6ANoCEdAXOaiO/+Kj3V9lChoBkdAiTgyxiXpn2gHTegDaAhHQF1Pko4MnZ11fZQoaAZHQIYXJXOnl4loB03oA2gIR0BdtfH5rP+odX2UKGgGR0CFCILNwBHTaAdN6ANoCEdAXe2s5n13+3V9lChoBkdAfCbMmWt2cWgHTegDaAhHQF36Fb3XZoR1fZQoaAZHQImp9yHVPN5oB03eA2gIR0BeYPGlyimEdX2UKGgGR0B4xDBFd9lVaAdN6ANoCEdAXstZGKAJ9nV9lChoBkdAiahKxC6YmmgHTegDaAhHQF8DefqX4TN1fZQoaAZHQHMi2+j/MntoB03oA2gIR0BfD9nGsFMadX2UKGgGR0CISSBZpztDaAdN6ANoCEdAX3WF8G9pRHV9lChoBkdAiHLx6Ww/xGgHTegDaAhHQF/drWRRuTB1fZQoaAZHQH48NZJTVDtoB03oA2gIR0BgCmoaUA1fdX2UKGgGR0CFhddAxBVuaAdN6ANoCEdAYBCCwr1/UnV9lChoBkdAhX98dgfEGmgHTegDaAhHQGBDUW2w3YN1fZQoaAZHQID1dIsiB5JoB03oA2gIR0Bgd1U83dbgdX2UKGgGR0CGs2GrS3LFaAdN6ANoCEdAYJMbG3nZCnV9lChoBkdAhegpbdJrcmgHTegDaAhHQGCZMg+yJKt1fZQoaAZHQIZ39DhLoOhoB03oA2gIR0BgzE41gpjMdX2UKGgGR0BJ7SY5T6zmaAdLUmgIR0Bg12Btk4FSdX2UKGgGR0CJEXybx3FDaAdN6ANoCEdAYQAGFBY3enV9lChoBkdAhWJ01ZTya2gHTegDaAhHQGEcpJPIn0F1fZQoaAZHQIcy+x2St/5oB03oA2gIR0BhIvC4z7/GdX2UKGgGR0CDY11X/5tWaAdN6ANoCEdAYWOuOjqOcXV9lChoBkdAh5yCiyprDmgHTegDaAhHQGGOBZ6lchV1fZQoaAZHQICm7obGWD9oB03oA2gIR0BhqsijcmBwdX2UKGgGR0CFCgi35N48aAdN6ANoCEdAYbEpe/pMYnV9lChoBkdAhGXKhtcfNmgHTegDaAhHQGHyZTyauwJ1fZQoaAZHQIEp5ULlV95oB03oA2gIR0BiHZqVQhwEdX2UKGgGR0B550b0e2d/aAdN6ANoCEdAYjrMqz7di3V9lChoBkdAiTPf0ulGgGgHTegDaAhHQGJBNmUW2w51fZQoaAZHQIsIyDPGACpoB03oA2gIR0BiglO/L1VYdX2UKGgGR0B6LnOqvNeMaAdN6ANoCEdAYqzlJ6IFeXV9lChoBkdAe6pR5kbxVmgHTegDaAhHQGLJgf+0gKZ1fZQoaAZHQIvy9j/dZaFoB03oA2gIR0Biz92/zreJdX2UKGgGR0B6UTTLGJemaAdN6ANoCEdAYxCt7rs0HnV9lChoBkdAfPIuxrzoU2gHTegDaAhHQGM7LIgeRxN1fZQoaAZHQFWjBZIQOFxoB0tkaAhHQGNJWVVxS511fZQoaAZHQH9+NM9KVY9oB03oA2gIR0BjV5xtHhCMdX2UKGgGR0B9dOtQsPJ8aAdN6ANoCEdAY13qrzXjEXV9lChoBkdAgHhb961LJ2gHTegDaAhHQGOelYdQwbl1fZQoaAZHQID4HoHLRrtoB03oA2gIR0Bj2A2/BWPtdX2UKGgGR0CF69ggHNX6aAdN6ANoCEdAY+ZxsEaESXV9lChoBkdAf+bva11GLGgHTegDaAhHQGPswz+FUQ11fZQoaAZHQFhD1ZTyauxoB0tsaAhHQGP1upbUwzt1fZQoaAZHQIaMtga3qiZoB03oA2gIR0BkLI+bExZddX2UKGgGR0CHWyO4oZydaAdN6ANoCEdAZGTkELYwqXV9lChoBkdAhlrEHUtqYmgHTegDaAhHQGR5ngHeJpF1fZQoaAZHQIiVq8BdUsFoB03oA2gIR0BkgpSJj2BbdX2UKGgGR0CB8BrGBFuvaAdN6ANoCEdAZLoajN6gNHV9lChoBkdAiaGMKb8WK2gHTegDaAhHQGTy0163RXx1fZQoaAZHQIMTApDu0C1oB03oA2gIR0BlB39kz41xdX2UKGgGR0CGPtBQemvXaAdN6ANoCEdAZRBmHP/rB3V9lChoBkdAhaOze40/GGgHTegDaAhHQGVHszuWrwR1fZQoaAZHQIRCiNhmXgNoB03oA2gIR0BlgIm/nGKidX2UKGgGR0CFyrtPYWcjaAdN6ANoCEdAZZUNEPUaynV9lChoBkdAhZI5mI0qIGgHTegDaAhHQGWd+Ofdykt1fZQoaAZHQIX+Gp84PwxoB03oA2gIR0Bl1X336AOKdX2UKGgGR0CFQMk1Mue0aAdN6ANoCEdAZg5uQ6p5vHV9lChoBkdAhrf0ornTzGgHTegDaAhHQGYjNr0rbxp1fZQoaAZHQIdbQyRB/qhoB03oA2gIR0BmLC2SdOIqdX2UKGgGR0CFeUXeFcptaAdN6ANoCEdAZmBguRLbpXV9lChoBkdAiOlYR28qWmgHTegDaAhHQGaU3BHkLhJ1fZQoaAZHQIyElwFTvRZoB03oA2gIR0BmqAV0tAcDdX2UKGgGR0CNP/K8L8aXaAdN6ANoCEdAZrBHvttygnV9lChoBkdAh20tmthd+2gHTegDaAhHQGbj/WUbDMx1fZQoaAZHQIg59Vea8YhoB03oA2gIR0BnGY//vOQhdX2UKGgGR0CHz3DQ7cO9aAdN6ANoCEdAZy00CzTnaHV9lChoBkdAiPj/AKv3amgHTegDaAhHQGc1vWQOnVJ1fZQoaAZHQIavo3YL9dhoB03oA2gIR0BnagyEcsDodX2UKGgGR0CEFYjgQ6IWaAdN6ANoCEdAZ5+/N7jT8nV9lChoBkdAiHAaR6nivWgHTegDaAhHQGezFmOEM9d1fZQoaAZHQIY+eT1TR6ZoB03oA2gIR0Bnu4EMb3oLdX2UKGgGR0CJG+voNd7faAdN6ANoCEdAZ+8nKnvUjXV9lChoBkdAiPzBBqsU7GgHTegDaAhHQGgjyn1nM+x1fZQoaAZHQIsRdd/rjYJoB03oA2gIR0BoN0CzTnaGdX2UKGgGR0CKIWy0KJEZaAdN6ANoCEdAaD+i3XqZ+nV9lChoBkdAhGXUtZmqYWgHTegDaAhHQGhzoegctGx1fZQoaAZHQIVVWRq46OpoB03oA2gIR0BoqKlk6LfldX2UKGgGR0CAKjUwztTlaAdN6ANoCEdAaLwvaDf3vnV9lChoBkdAiTZm8ujASGgHTegDaAhHQGjEt3OfNA11fZQoaAZHQIQG3TI/7i1oB03oA2gIR0Bo+HhbW3BpdX2UKGgGR0CASsax5cC6aAdN6ANoCEdAaS1a+vhZQ3V9lChoBkdAgHbB4t6HCWgHTegDaAhHQGlAeB6KLsN1fZQoaAZHQIOK8WVNYbNoB03oA2gIR0BpSMBfa6BidX2UKGgGR0CAmT9NN8E3aAdN6ANoCEdAaXv+VC5VfnV9lChoBkdAeRFYKpkwvmgHTegDaAhHQGmxFlbu+h51fZQoaAZHQIEzt/QSi/RoB03oA2gIR0BpxDv7WNFSdX2UKGgGR0CALqdiDujRaAdN6ANoCEdAacyHARChOHV9lChoBkdAg/9Gm1pj+mgHTegDaAhHQGn//779AHF1fZQoaAZHQIAVRmTTvy9oB03oA2gIR0BqNLHdXT3JdX2UKGgGR0CD8Sjps41haAdN6ANoCEdAakgZjx0+1XV9lChoBkdAiGGIkiUxEmgHTegDaAhHQGpQjGDL8rJ1fZQoaAZHQIMJg13t8eFoB03oA2gIR0BqhMXLvCuVdX2UKGgGR0CID10aqCHzaAdN6ANoCEdAarpy8SPEKnV9lChoBkdAgOfZpztCzGgHTegDaAhHQGrOHVXmvGJ1fZQoaAZHQIRP4Th5xBFoB03oA2gIR0Bq1pPbfxc3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu102", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
|
logs/a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58dc7ed1b0bbbb64b086e81f9f965e687defcc1a79a83317ea6be4b79b99e8cd
|
3 |
+
size 129108
|
logs/tensorboard/A2C_1/events.out.tfevents.1659066037.rlcube.25123.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dec255b825a6e666dbcd652a3e005c32602456b711dd34780d7df6ecb7a1999
|
3 |
+
size 40
|
logs/tensorboard/A2C_2/events.out.tfevents.1659066077.rlcube.25589.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e06a12d601f549e39ec8a90e6ec6592e6caeea7bd15801e4841869617bbca02e
|
3 |
+
size 40
|
logs/tensorboard/A2C_3/events.out.tfevents.1659066147.rlcube.26627.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23649725e85f73a8ec7a259a088dbd0a86e75cdaa9dd5d6b0ba2eb0dc4702bf8
|
3 |
+
size 40
|
logs/tensorboard/A2C_4/events.out.tfevents.1659066270.rlcube.27292.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6598d93f4b24ed4c50499d75720e39628039fc18afa0094d57c85ea80a91778
|
3 |
+
size 40
|
logs/tensorboard/A2C_5/events.out.tfevents.1659066388.rlcube.27802.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d20e58983c2ede83ffe88da62e07c6053b3046788064e9ae8f74ed96aadb10b
|
3 |
+
size 40
|
logs/tensorboard/A2C_6/events.out.tfevents.1659070176.rlcube.3780.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4b46f245772945d81562fdc388644b890fd5836ad00aec787f37a270332e8cb
|
3 |
+
size 7666
|
logs/tensorboard/A2C_7/events.out.tfevents.1659071008.rlcube.7361.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:989f7c4123e43553fa3f9e8f797bfb9aabe924b2df8e50675892c0486083a679
|
3 |
+
size 50868
|
logs/vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b7cbc70f2b9c4cc0a67b222b7fd8b17aa335c0e54c354269d6a7a7493a3e9c1
|
3 |
+
size 2453
|
replay.mp4
ADDED
Binary file (232 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 674.5907114178641, "std_reward": 89.58016415660386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-29T13:07:29.104670"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8d1d9d244c5139e12a91e9a7129f14acb4add552e09277166a03bd78464b89f
|
3 |
+
size 2521
|