FPN Model Card
Table of Contents:
Load trained model
import segmentation_models_pytorch as smp
model = smp.FPN.from_pretrained("GID-segmentation-FPN_resnet34")
Model init parameters
model_init_params = {
"encoder_name": "resnet34",
"encoder_depth": 5,
"encoder_weights": "imagenet",
"decoder_pyramid_channels": 256,
"decoder_segmentation_channels": 128,
"decoder_merge_policy": "add",
"decoder_dropout": 0.2,
"in_channels": 4,
"classes": 1,
"activation": None,
"upsampling": 4,
"aux_params": None
}
Model metrics
[
{
"test_per_image_iou": 0.6289815902709961,
"test_dataset_iou": 0.7612584233283997
}
]
Dataset
Dataset name: GID
More Information
- Library: https://github.com/qubvel/segmentation_models.pytorch
- Docs: https://smp.readthedocs.io/en/latest/
This model has been pushed to the Hub using the PytorchModelHubMixin
- Downloads last month
- 8
Inference API (serverless) does not yet support segmentation-models-pytorch models for this pipeline type.