File size: 2,847 Bytes
c0a0fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
tags:
- generated_from_trainer
datasets:
- sst2
model-index:
- name: finetuned_gpt2-medium_sst2_negation0.0_pretrainedFalse_epochs30
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_gpt2-medium_sst2_negation0.0_pretrainedFalse_epochs30

This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the sst2 dataset.
It achieves the following results on the evaluation set:
- Loss: 5.8610

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.7927        | 1.0   | 1059  | 3.3242          |
| 2.4065        | 2.0   | 2118  | 3.5353          |
| 2.0753        | 3.0   | 3177  | 3.8060          |
| 1.8186        | 4.0   | 4236  | 4.0682          |
| 1.6246        | 5.0   | 5295  | 4.3559          |
| 1.4789        | 6.0   | 6354  | 4.5638          |
| 1.367         | 7.0   | 7413  | 4.6723          |
| 1.2762        | 8.0   | 8472  | 4.8568          |
| 1.2058        | 9.0   | 9531  | 4.9660          |
| 1.1499        | 10.0  | 10590 | 5.0804          |
| 1.1047        | 11.0  | 11649 | 5.1751          |
| 1.0641        | 12.0  | 12708 | 5.2775          |
| 1.0287        | 13.0  | 13767 | 5.3404          |
| 1.0026        | 14.0  | 14826 | 5.4163          |
| 0.9781        | 15.0  | 15885 | 5.4508          |
| 0.9559        | 16.0  | 16944 | 5.4982          |
| 0.945         | 17.0  | 18003 | 5.5577          |
| 0.9267        | 18.0  | 19062 | 5.5923          |
| 0.9153        | 19.0  | 20121 | 5.6331          |
| 0.8998        | 20.0  | 21180 | 5.6636          |
| 0.8864        | 21.0  | 22239 | 5.7158          |
| 0.8802        | 22.0  | 23298 | 5.7324          |
| 0.8727        | 23.0  | 24357 | 5.7652          |
| 0.8586        | 24.0  | 25416 | 5.7807          |
| 0.8565        | 25.0  | 26475 | 5.7954          |
| 0.851         | 26.0  | 27534 | 5.8253          |
| 0.8457        | 27.0  | 28593 | 5.8330          |
| 0.8432        | 28.0  | 29652 | 5.8485          |
| 0.8405        | 29.0  | 30711 | 5.8505          |
| 0.8354        | 30.0  | 31770 | 5.8610          |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.7.0
- Datasets 2.8.0
- Tokenizers 0.13.2