bert-finetuned-ner4invoice13

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0188
  • Precision: 0.9038
  • Recall: 0.9592
  • F1: 0.9307
  • Accuracy: 0.9949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 14 0.4838 0.0 0.0 0.0 0.8854
No log 2.0 28 0.2109 0.2167 0.2653 0.2385 0.9512
No log 3.0 42 0.1063 0.6349 0.8163 0.7143 0.9716
No log 4.0 56 0.0602 0.7818 0.8776 0.8269 0.9825
No log 5.0 70 0.0361 0.9231 0.9796 0.9505 0.9909
No log 6.0 84 0.0305 0.9231 0.9796 0.9505 0.9927
No log 7.0 98 0.0476 0.8545 0.9592 0.9038 0.9898
No log 8.0 112 0.0211 0.9038 0.9592 0.9307 0.9942
No log 9.0 126 0.0258 0.9057 0.9796 0.9412 0.9924
No log 10.0 140 0.0188 0.9038 0.9592 0.9307 0.9949

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for jgaertner/bert-finetuned-ner4invoice13

Finetuned
(631)
this model