wav2vec2-large-xls-r-300m-russian-colab-beam_search_test
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.7619
- Wer: 0.4680
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
10.0158 | 4.16 | 100 | 5.4134 | 1.0 |
4.0394 | 8.33 | 200 | 3.4304 | 1.0 |
3.2721 | 12.49 | 300 | 3.2273 | 1.0 |
3.1277 | 16.66 | 400 | 2.8023 | 0.9984 |
1.3791 | 20.82 | 500 | 0.9888 | 0.8546 |
0.3659 | 24.99 | 600 | 0.7602 | 0.6304 |
0.1858 | 29.16 | 700 | 0.7965 | 0.6156 |
0.1403 | 33.33 | 800 | 0.7998 | 0.5839 |
0.1173 | 37.49 | 900 | 0.8353 | 0.5941 |
0.0917 | 41.66 | 1000 | 0.8272 | 0.5522 |
0.0743 | 45.82 | 1100 | 0.8342 | 0.5471 |
0.063 | 49.99 | 1200 | 0.7988 | 0.5352 |
0.0528 | 54.16 | 1300 | 0.7740 | 0.5201 |
0.0456 | 58.33 | 1400 | 0.7636 | 0.5165 |
0.0389 | 62.49 | 1500 | 0.7922 | 0.5161 |
0.0329 | 66.66 | 1600 | 0.8035 | 0.5158 |
0.0283 | 70.82 | 1700 | 0.7873 | 0.4832 |
0.0255 | 74.99 | 1800 | 0.7853 | 0.4870 |
0.0236 | 79.16 | 1900 | 0.8236 | 0.5045 |
0.0202 | 83.33 | 2000 | 0.7661 | 0.4796 |
0.0165 | 87.49 | 2100 | 0.7584 | 0.4680 |
0.0156 | 91.66 | 2200 | 0.7685 | 0.4772 |
0.0149 | 95.82 | 2300 | 0.7519 | 0.4696 |
0.0126 | 99.99 | 2400 | 0.7619 | 0.4680 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.