ernie-gram-zh-ner
This model is a fine-tuned version of nghuyong/ernie-gram-zh on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0309
- Overall Precision: 0.8935
- Overall Recall: 0.9325
- Overall F1: 0.9126
- Overall Accuracy: 0.9909
- Ucm: 0.9085
- Lcm: 0.8989
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Ucm | Lcm |
---|---|---|---|---|---|---|---|---|---|
1.8192 | 0.08 | 10 | 1.7428 | 0.0007 | 0.0036 | 0.0011 | 0.7089 | 0.0299 | 0.0299 |
0.6082 | 0.16 | 20 | 0.5770 | 0.0 | 0.0 | 0.0 | 0.8993 | 0.4668 | 0.4668 |
0.4604 | 0.24 | 30 | 0.4031 | 0.0171 | 0.0039 | 0.0063 | 0.9029 | 0.4668 | 0.4659 |
0.3272 | 0.32 | 40 | 0.2515 | 0.1391 | 0.1987 | 0.1636 | 0.9310 | 0.5393 | 0.5281 |
0.2219 | 0.4 | 50 | 0.1789 | 0.3743 | 0.5158 | 0.4338 | 0.9517 | 0.6002 | 0.5885 |
0.1959 | 0.48 | 60 | 0.1358 | 0.4535 | 0.5968 | 0.5154 | 0.9651 | 0.6606 | 0.6470 |
0.1474 | 0.56 | 70 | 0.1071 | 0.5905 | 0.7118 | 0.6455 | 0.9713 | 0.7258 | 0.7092 |
0.13 | 0.64 | 80 | 0.0892 | 0.6481 | 0.7664 | 0.7023 | 0.9748 | 0.7560 | 0.7400 |
0.1014 | 0.72 | 90 | 0.0764 | 0.6914 | 0.7869 | 0.7361 | 0.9775 | 0.7811 | 0.7654 |
0.0987 | 0.8 | 100 | 0.0674 | 0.7185 | 0.8150 | 0.7637 | 0.9802 | 0.7889 | 0.7745 |
0.0944 | 0.88 | 110 | 0.0587 | 0.7703 | 0.8486 | 0.8075 | 0.9827 | 0.8077 | 0.7920 |
0.0851 | 0.96 | 120 | 0.0560 | 0.7857 | 0.8675 | 0.8245 | 0.9834 | 0.8143 | 0.7986 |
0.0857 | 1.04 | 130 | 0.0527 | 0.8021 | 0.8854 | 0.8417 | 0.9850 | 0.8315 | 0.8167 |
0.0883 | 1.12 | 140 | 0.0480 | 0.8207 | 0.8867 | 0.8524 | 0.9863 | 0.8545 | 0.8397 |
0.0666 | 1.2 | 150 | 0.0478 | 0.8207 | 0.8946 | 0.8561 | 0.9862 | 0.8481 | 0.8342 |
0.0881 | 1.28 | 160 | 0.0452 | 0.8321 | 0.8968 | 0.8632 | 0.9869 | 0.8542 | 0.8406 |
0.0734 | 1.3600 | 170 | 0.0437 | 0.8337 | 0.8961 | 0.8638 | 0.9872 | 0.8596 | 0.8454 |
0.0734 | 1.44 | 180 | 0.0412 | 0.8412 | 0.8961 | 0.8678 | 0.9877 | 0.8626 | 0.8499 |
0.0721 | 1.52 | 190 | 0.0407 | 0.8398 | 0.9 | 0.8688 | 0.9879 | 0.8620 | 0.8475 |
0.0888 | 1.6 | 200 | 0.0398 | 0.8488 | 0.9043 | 0.8757 | 0.9880 | 0.8656 | 0.8524 |
0.0643 | 1.6800 | 210 | 0.0397 | 0.8503 | 0.9058 | 0.8771 | 0.9883 | 0.8690 | 0.8548 |
0.077 | 1.76 | 220 | 0.0379 | 0.8576 | 0.9051 | 0.8807 | 0.9885 | 0.8804 | 0.8662 |
0.0645 | 1.8400 | 230 | 0.0381 | 0.8554 | 0.9079 | 0.8809 | 0.9885 | 0.8762 | 0.8623 |
0.056 | 1.92 | 240 | 0.0368 | 0.8615 | 0.9099 | 0.8850 | 0.9890 | 0.8819 | 0.8684 |
0.0612 | 2.0 | 250 | 0.0372 | 0.8571 | 0.9118 | 0.8836 | 0.9890 | 0.8819 | 0.8675 |
0.054 | 2.08 | 260 | 0.0362 | 0.8723 | 0.9141 | 0.8927 | 0.9893 | 0.8877 | 0.8747 |
0.0584 | 2.16 | 270 | 0.0355 | 0.8773 | 0.9171 | 0.8968 | 0.9896 | 0.8922 | 0.8786 |
0.0581 | 2.24 | 280 | 0.0357 | 0.8713 | 0.9158 | 0.8930 | 0.9894 | 0.8907 | 0.8774 |
0.0541 | 2.32 | 290 | 0.0352 | 0.8804 | 0.9171 | 0.8984 | 0.9897 | 0.8946 | 0.8807 |
0.0507 | 2.4 | 300 | 0.0351 | 0.8757 | 0.9176 | 0.8962 | 0.9896 | 0.8937 | 0.8801 |
0.0574 | 2.48 | 310 | 0.0351 | 0.8803 | 0.9197 | 0.8996 | 0.9897 | 0.8949 | 0.8813 |
0.0528 | 2.56 | 320 | 0.0352 | 0.8771 | 0.9203 | 0.8982 | 0.9897 | 0.8907 | 0.8771 |
0.0488 | 2.64 | 330 | 0.0345 | 0.8804 | 0.9218 | 0.9006 | 0.9898 | 0.8934 | 0.8804 |
0.0582 | 2.7200 | 340 | 0.0335 | 0.8802 | 0.9218 | 0.9005 | 0.9901 | 0.8979 | 0.8844 |
0.063 | 2.8 | 350 | 0.0332 | 0.8788 | 0.9238 | 0.9007 | 0.9902 | 0.8976 | 0.8841 |
0.059 | 2.88 | 360 | 0.0328 | 0.8778 | 0.9242 | 0.9004 | 0.9902 | 0.8967 | 0.8853 |
0.052 | 2.96 | 370 | 0.0319 | 0.8837 | 0.9238 | 0.9033 | 0.9905 | 0.9025 | 0.8895 |
0.0687 | 3.04 | 380 | 0.0328 | 0.8832 | 0.9263 | 0.9043 | 0.9901 | 0.8986 | 0.8865 |
0.0536 | 3.12 | 390 | 0.0323 | 0.8848 | 0.9261 | 0.9050 | 0.9904 | 0.9019 | 0.8904 |
0.0608 | 3.2 | 400 | 0.0324 | 0.8860 | 0.9287 | 0.9068 | 0.9904 | 0.9004 | 0.8898 |
0.0538 | 3.2800 | 410 | 0.0329 | 0.8885 | 0.9302 | 0.9089 | 0.9903 | 0.8982 | 0.8889 |
0.0524 | 3.36 | 420 | 0.0328 | 0.8915 | 0.9304 | 0.9105 | 0.9903 | 0.9010 | 0.8913 |
0.0483 | 3.44 | 430 | 0.0322 | 0.8889 | 0.9300 | 0.9090 | 0.9904 | 0.9019 | 0.8919 |
0.0615 | 3.52 | 440 | 0.0318 | 0.8849 | 0.9300 | 0.9069 | 0.9906 | 0.9034 | 0.8925 |
0.0583 | 3.6 | 450 | 0.0329 | 0.8833 | 0.9317 | 0.9068 | 0.9901 | 0.8992 | 0.8877 |
0.0495 | 3.68 | 460 | 0.0317 | 0.8876 | 0.9285 | 0.9076 | 0.9905 | 0.9034 | 0.8925 |
0.0539 | 3.76 | 470 | 0.0320 | 0.8853 | 0.9289 | 0.9066 | 0.9904 | 0.9031 | 0.8916 |
0.0522 | 3.84 | 480 | 0.0312 | 0.8892 | 0.9278 | 0.9081 | 0.9907 | 0.9067 | 0.8943 |
0.0457 | 3.92 | 490 | 0.0313 | 0.8905 | 0.9296 | 0.9096 | 0.9906 | 0.9055 | 0.8940 |
0.0532 | 4.0 | 500 | 0.0305 | 0.8971 | 0.9293 | 0.9129 | 0.9911 | 0.9082 | 0.8986 |
0.0514 | 4.08 | 510 | 0.0307 | 0.8919 | 0.9298 | 0.9105 | 0.9909 | 0.9067 | 0.8967 |
0.0571 | 4.16 | 520 | 0.0310 | 0.8897 | 0.9306 | 0.9097 | 0.9908 | 0.9073 | 0.8961 |
0.0491 | 4.24 | 530 | 0.0317 | 0.8846 | 0.9308 | 0.9071 | 0.9905 | 0.9031 | 0.8922 |
0.0512 | 4.32 | 540 | 0.0309 | 0.8921 | 0.9317 | 0.9115 | 0.9909 | 0.9082 | 0.8976 |
0.0484 | 4.4 | 550 | 0.0313 | 0.8918 | 0.9317 | 0.9113 | 0.9907 | 0.9070 | 0.8973 |
0.0458 | 4.48 | 560 | 0.0315 | 0.8913 | 0.9321 | 0.9112 | 0.9907 | 0.9064 | 0.8967 |
0.052 | 4.5600 | 570 | 0.0314 | 0.8917 | 0.9323 | 0.9115 | 0.9908 | 0.9088 | 0.8992 |
0.0511 | 4.64 | 580 | 0.0310 | 0.8931 | 0.9323 | 0.9123 | 0.9908 | 0.9088 | 0.8992 |
0.049 | 4.72 | 590 | 0.0307 | 0.8942 | 0.9319 | 0.9127 | 0.9909 | 0.9088 | 0.8992 |
0.0432 | 4.8 | 600 | 0.0307 | 0.8946 | 0.9323 | 0.9131 | 0.9909 | 0.9094 | 0.8998 |
0.0489 | 4.88 | 610 | 0.0308 | 0.8929 | 0.9323 | 0.9122 | 0.9909 | 0.9082 | 0.8982 |
0.0544 | 4.96 | 620 | 0.0309 | 0.8935 | 0.9325 | 0.9126 | 0.9909 | 0.9085 | 0.8989 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.6.0+cu126
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jetaudio/ernie-gram-zh-ner
Base model
nghuyong/ernie-gram-zh