File size: 24,170 Bytes
a3055fa
 
 
 
 
 
 
06e4cba
a3055fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e4cba
 
 
 
 
 
 
 
a3055fa
06e4cba
 
 
 
 
 
 
 
a3055fa
 
 
 
06e4cba
a3055fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e4cba
a3055fa
06e4cba
a3055fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e4cba
a3055fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e4cba
a3055fa
 
 
06e4cba
a3055fa
06e4cba
a3055fa
06e4cba
a3055fa
 
 
 
 
06e4cba
a3055fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e4cba
 
a3055fa
 
 
 
06e4cba
 
 
 
a3055fa
06e4cba
 
 
 
a3055fa
 
 
 
 
 
06e4cba
a3055fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e4cba
a3055fa
 
06e4cba
a3055fa
 
06e4cba
 
 
a3055fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import copy
from typing import Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.models.t5 import modeling_t5
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)

from decoder_only_t5.config import DecoderOnlyT5Config


logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DecoderOnlyT5Config"


class DecoderOnlyT5LayerFF(modeling_t5.T5LayerFF):
    def __init__(self, config: DecoderOnlyT5Config):
        super(modeling_t5.T5LayerFF, self).__init__()
        if config.is_gated_act:
            self.DenseReluDense = modeling_t5.T5DenseGatedActDense(config)
        else:
            self.DenseReluDense = modeling_t5.T5DenseActDense(config)

        if not config.parallel_layers:
            self.layer_norm = modeling_t5.T5LayerNorm(
                config.d_model, eps=config.layer_norm_epsilon
            )
        else:
            self.layer_norm = nn.Identity()
        self.dropout = nn.Dropout(config.dropout_rate)


# https://github.com/huggingface/transformers/blob/7ee995fd9c692761c4601ddbffa2ac2ec9f27b0b/src/transformers/models/llama/modeling_llama.py#L263
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim
    )
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class DecoderOnlyT5Attention(modeling_t5.T5Attention):
    """
    Supports both multi-head and multi-query attention.
    https://arxiv.org/abs/1911.02150
    https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/components/attention/dense_attention.py#L292
    """

    def __init__(self, config: DecoderOnlyT5Config, has_relative_attention_bias=False):
        super(modeling_t5.T5Attention, self).__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.n_kv_heads = 1 if config.multi_query_attention else self.n_heads
        self.n_kv_groups = self.n_heads // self.n_kv_heads
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim
        self.kv_inner_dim = self.n_kv_heads * self.key_value_proj_dim

        # Mesh TensorFlow initialization to avoid scaling before softmax

        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(
                self.relative_attention_num_buckets, self.n_heads
            )
        self.pruned_heads = set()
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        mask=None,
        key_value_states=None,
        position_bias=None,
        past_key_value=None,
        layer_head_mask=None,
        query_length=None,
        use_cache=False,
        output_attentions=False,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        # past_key_value[0] is (batch_size, n_kv_heads, q_len - 1, dim_per_head)
        batch_size, seq_length = hidden_states.shape[:2]

        real_seq_length = seq_length

        if past_key_value is not None:
            if len(past_key_value) != 2:
                raise ValueError(
                    f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
                )
            real_seq_length += (
                past_key_value[0].shape[2] if query_length is None else query_length
            )

        key_length = (
            real_seq_length if key_value_states is None else key_value_states.shape[1]
        )

        def shape(states, n_heads):
            """projection"""
            return states.view(
                batch_size, -1, n_heads, self.key_value_proj_dim
            ).transpose(1, 2)

        def unshape(states):
            """reshape"""
            return (
                states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
            )

        def project(hidden_states, proj_layer, key_value_states, past_key_value):
            """projects hidden states correctly to key/query states"""
            if key_value_states is None:
                # self-attn
                # (batch_size, n_kv_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(hidden_states), self.n_kv_heads)
            elif past_key_value is None:
                # cross-attn
                # (batch_size, n_kv_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states), self.n_kv_heads)

            if past_key_value is not None:
                if key_value_states is None:
                    # self-attn
                    # (batch_size, n_kv_heads, key_length, dim_per_head)
                    hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
                elif past_key_value.shape[2] != key_value_states.shape[1]:
                    # checking that the `sequence_length` of the `past_key_value` is the same as
                    # the provided `key_value_states` to support prefix tuning
                    # cross-attn
                    # (batch_size, n_kv_heads, seq_length, dim_per_head)
                    hidden_states = shape(proj_layer(key_value_states), self.n_kv_heads)
                else:
                    # cross-attn
                    hidden_states = past_key_value
            return hidden_states

        # get query states
        query_states = shape(
            self.q(hidden_states), self.n_heads
        )  # (batch_size, n_heads, seq_length, dim_per_head)

        # get key/value states
        key_states = repeat_kv(
            project(
                hidden_states,
                self.k,
                key_value_states,
                past_key_value[0] if past_key_value is not None else None,
            ),
            self.n_kv_groups,
        )
        value_states = repeat_kv(
            project(
                hidden_states,
                self.v,
                key_value_states,
                past_key_value[1] if past_key_value is not None else None,
            ),
            self.n_kv_groups,
        )

        # compute scores
        scores = torch.matmul(
            query_states, key_states.transpose(3, 2)
        )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

        if position_bias is None:
            if not self.has_relative_attention_bias:
                position_bias = torch.zeros(
                    (1, self.n_heads, real_seq_length, key_length),
                    device=scores.device,
                    dtype=scores.dtype,
                )
                if self.gradient_checkpointing and self.training:
                    position_bias.requires_grad = True
            else:
                position_bias = self.compute_bias(
                    real_seq_length, key_length, device=scores.device
                )

            # if key and values are already calculated
            # we want only the last query position bias
            if past_key_value is not None:
                position_bias = position_bias[:, :, -hidden_states.size(1) :, :]

            if mask is not None:
                position_bias = (
                    position_bias + mask
                )  # (batch_size, n_heads, seq_length, key_length)

        if self.pruned_heads:
            mask = torch.ones(position_bias.shape[1])
            mask[list(self.pruned_heads)] = 0
            position_bias_masked = position_bias[:, mask.bool()]
        else:
            position_bias_masked = position_bias

        scores += position_bias_masked
        attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
            scores
        )  # (batch_size, n_heads, seq_length, key_length)
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )  # (batch_size, n_heads, seq_length, key_length)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        attn_output = unshape(
            torch.matmul(attn_weights, value_states)
        )  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)

        present_key_value_state = (
            (key_states, value_states) if (self.is_decoder and use_cache) else None
        )
        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

        if output_attentions:
            outputs = outputs + (attn_weights,)
        return outputs


class DecoderOnlyT5LayerSelfAttention(modeling_t5.T5LayerSelfAttention):
    def __init__(self, config, has_relative_attention_bias=False):
        super(modeling_t5.T5LayerSelfAttention, self).__init__()
        self.SelfAttention = DecoderOnlyT5Attention(
            config, has_relative_attention_bias=has_relative_attention_bias
        )
        self.layer_norm = modeling_t5.T5LayerNorm(
            config.d_model, eps=config.layer_norm_epsilon
        )
        self.dropout = nn.Dropout(config.dropout_rate)
        self.parallel_layers = config.parallel_layers

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
    ):
        if not self.parallel_layers:
            x = self.layer_norm(hidden_states)
        else:
            x = hidden_states
        attention_output = self.SelfAttention(
            x,
            mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        if not self.parallel_layers:
            # When parallel_layers is True, the residual connection is applied
            # in the decoder block instead of here.
            hidden_states = hidden_states + self.dropout(attention_output[0])
        else:
            hidden_states = attention_output[0]
        outputs = (hidden_states,) + attention_output[
            1:
        ]  # add attentions if we output them
        return outputs


class DecoderOnlyT5Block(modeling_t5.T5Block):
    def __init__(self, config, has_relative_attention_bias=False):
        super(modeling_t5.T5Block, self).__init__()
        self.is_decoder = config.is_decoder
        self.is_decoder_only = config.is_decoder_only
        self.layer = nn.ModuleList()
        self.layer.append(
            DecoderOnlyT5LayerSelfAttention(
                config, has_relative_attention_bias=has_relative_attention_bias
            )
        )
        if self.is_decoder:
            if config.is_decoder_only:
                self.layer.append(nn.Identity())
            else:
                self.layer.append(modeling_t5.T5LayerCrossAttention(config))
        self.parallel_layers = config.parallel_layers
        self.layer.append(DecoderOnlyT5LayerFF(config))

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
        return_dict=True,
    ):
        if past_key_value is not None:
            if not self.is_decoder:
                logger.warning(
                    "`past_key_values` is passed to the encoder. Please make sure this is intended."
                )
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
                    f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                    f"Got {len(past_key_value)} past key / value states"
                )

            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None

        ff_layer = self.layer[-1]
        if self.parallel_layers:
            # https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L563-L568
            x = self.layer[0].layer_norm(hidden_states)
            ff_output = ff_layer(x)
        else:
            x = hidden_states

        self_attention_outputs = self.layer[0](
            x,
            attention_mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        x, present_key_value_state = self_attention_outputs[:2]
        attention_outputs = self_attention_outputs[
            2:
        ]  # Keep self-attention outputs and relative position weights

        # clamp inf values to enable fp16 training
        if x.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(x).any(),
                torch.finfo(x.dtype).max - 1000,
                torch.finfo(x.dtype).max,
            )
            x = torch.clamp(x, min=-clamp_value, max=clamp_value)

        do_cross_attention = (
            self.is_decoder
            and not self.is_decoder_only
            and encoder_hidden_states is not None
        )
        if do_cross_attention:
            # the actual query length is unknown for cross attention
            # if using past key value states. Need to inject it here
            if present_key_value_state is not None:
                query_length = present_key_value_state[0].shape[2]
            else:
                query_length = None

            cross_attention_outputs = self.layer[1](
                x,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                query_length=query_length,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            x = cross_attention_outputs[0]

            # clamp inf values to enable fp16 training
            if x.dtype == torch.float16:
                clamp_value = torch.where(
                    torch.isinf(x).any(),
                    torch.finfo(x.dtype).max - 1000,
                    torch.finfo(x.dtype).max,
                )
                x = torch.clamp(x, min=-clamp_value, max=clamp_value)

            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state = (
                    present_key_value_state + cross_attention_outputs[1]
                )

            # Keep cross-attention outputs and relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[2:]

        if self.parallel_layers:
            # https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L534-L578
            hidden_states = x + ff_output
            hidden_states *= 2**-0.5
            hidden_states = hidden_states + self.layer[0].dropout(hidden_states)
        else:
            hidden_states = ff_layer(x)

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
            hidden_states = torch.clamp(
                hidden_states, min=-clamp_value, max=clamp_value
            )

        outputs = (hidden_states,)

        if use_cache:
            outputs = outputs + (present_key_value_state,) + attention_outputs
        else:
            outputs = outputs + attention_outputs

        return outputs  # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)


class DecoderOnlyT5Stack(modeling_t5.T5Stack):
    def __init__(self, config, embed_tokens=None):
        super(modeling_t5.T5Stack, self).__init__(config)

        self.embed_tokens = embed_tokens
        self.is_decoder = config.is_decoder

        self.block = nn.ModuleList(
            [
                DecoderOnlyT5Block(
                    config,
                    has_relative_attention_bias=(
                        config.has_relative_attention_bias and bool(i == 0)
                    ),
                )
                for i in range(config.num_layers)
            ]
        )
        if not config.parallel_layers:
            self.final_layer_norm = modeling_t5.T5LayerNorm(
                config.d_model, eps=config.layer_norm_epsilon
            )
        else:
            self.final_layer_norm = nn.Identity()
        self.dropout = nn.Dropout(config.dropout_rate)

        # Initialize weights and apply final processing
        self.post_init()
        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False


class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
    def __init__(self, config: DecoderOnlyT5Config):
        super(modeling_t5.T5ForConditionalGeneration, self).__init__(config)
        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)
        assert (
            self.config.num_layers == 0
        ), "Decoder only model cannot have encoder layers"
        self.encoder = None

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = DecoderOnlyT5Stack(decoder_config, self.shared)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None

    @add_start_docstrings_to_model_forward(modeling_t5.T5_INPUTS_DOCSTRING)
    @replace_return_docstrings(
        output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
            config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
            labels in `[0, ..., config.vocab_size]`

        Returns:

        Examples:

        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)
            if input_ids is not None:
                input_ids = input_ids.to(self.decoder.first_device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(self.decoder.first_device)

        # Decode
        outputs = self.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            head_mask=None,
            cross_attn_head_mask=None,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)
            self.lm_head = self.lm_head.to(self.decoder.first_device)
            sequence_output = sequence_output.to(self.lm_head.weight.device)

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
            sequence_output = sequence_output * (self.model_dim**-0.5)

        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            # move labels to correct device to enable PP
            labels = labels.to(lm_logits.device)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
            # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )