File size: 42,207 Bytes
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
 
 
 
 
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
 
 
 
 
 
 
73e9929
 
f37375b
73e9929
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
 
 
 
 
 
73e9929
f37375b
 
73e9929
 
f37375b
 
73e9929
f37375b
73e9929
 
 
f37375b
 
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
73e9929
 
f37375b
 
 
73e9929
b1ba841
 
 
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
73e9929
 
 
 
 
 
 
 
 
 
 
 
 
f37375b
73e9929
 
f37375b
 
 
73e9929
b1ba841
 
 
73e9929
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
import functools
import math
import torch
from torch import nn, einsum
import torch.nn.functional as F
from functools import partial
from inspect import isfunction
from collections import namedtuple

from einops import rearrange, repeat, reduce
from einops.layers.torch import Rearrange

from entmax import entmax15
from torch.utils.checkpoint import checkpoint

DEFAULT_DIM_HEAD = 64

Intermediates = namedtuple('Intermediates', [
    'pre_softmax_attn',
    'post_softmax_attn'
])

LayerIntermediates = namedtuple('Intermediates', [
    'hiddens',
    'attn_intermediates',
    'past_key_values',
])


# helpers

def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def cast_tuple(val, depth):
    return val if isinstance(val, tuple) else (val,) * depth


class always():
    def __init__(self, val):
        self.val = val

    def __call__(self, *args, **kwargs):
        return self.val


class not_equals():
    def __init__(self, val):
        self.val = val

    def __call__(self, x, *args, **kwargs):
        return x != self.val


class equals():
    def __init__(self, val):
        self.val = val

    def __call__(self, x, *args, **kwargs):
        return x == self.val


def max_neg_value(tensor):
    return -torch.finfo(tensor.dtype).max


def l2norm(t):
    return F.normalize(t, p=2, dim=-1)


# init helpers

def init_zero_(layer):
    nn.init.constant_(layer.weight, 0.)
    if exists(layer.bias):
        nn.init.constant_(layer.bias, 0.)


# keyword argument helpers

def pick_and_pop(keys, d):
    values = list(map(lambda key: d.pop(key), keys))
    return dict(zip(keys, values))


def group_dict_by_key(cond, d):
    return_val = [dict(), dict()]
    for key in d.keys():
        match = bool(cond(key))
        ind = int(not match)
        return_val[ind][key] = d[key]
    return (*return_val,)


def string_begins_with(prefix, str):
    return str.startswith(prefix)


def group_by_key_prefix(prefix, d):
    return group_dict_by_key(partial(string_begins_with, prefix), d)


def groupby_prefix_and_trim(prefix, d):
    kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
    kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
    return kwargs_without_prefix, kwargs


# activations

class ReluSquared(nn.Module):
    def forward(self, x):
        return F.relu(x) ** 2


# positional embeddings

class AbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len):
        super().__init__()
        self.scale = dim ** -0.5
        self.emb = nn.Embedding(max_seq_len, dim)

    def forward(self, x):
        n = torch.arange(x.shape[1], device=x.device)
        pos_emb = self.emb(n)
        pos_emb = rearrange(pos_emb, 'n d -> () n d')
        return pos_emb * self.scale


class FixedPositionalEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, x, seq_dim=1, offset=0):
        t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
        sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
        emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
        return rearrange(emb, 'n d -> () n d')


class RelativePositionBias(nn.Module):
    def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8):
        super().__init__()
        self.scale = scale
        self.causal = causal
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.relative_attention_bias = nn.Embedding(num_buckets, heads)

    @staticmethod
    def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128):
        ret = 0
        n = -relative_position
        if not causal:
            num_buckets //= 2
            ret += (n < 0).long() * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, torch.zeros_like(n))

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
                torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
        ).long()
        val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))

        ret += torch.where(is_small, n, val_if_large)
        return ret

    def forward(self, qk_dots):
        i, j, device = *qk_dots.shape[-2:], qk_dots.device
        q_pos = torch.arange(i, dtype=torch.long, device=device)
        k_pos = torch.arange(j, dtype=torch.long, device=device)
        rel_pos = k_pos[None, :] - q_pos[:, None]
        rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets,
                                                   max_distance=self.max_distance)
        values = self.relative_attention_bias(rp_bucket)
        bias = rearrange(values, 'i j h -> () h i j')
        return qk_dots + (bias * self.scale)


class AlibiPositionalBias(nn.Module):
    def __init__(self, heads, **kwargs):
        super().__init__()
        self.heads = heads
        slopes = torch.Tensor(self._get_slopes(heads))
        slopes = rearrange(slopes, 'h -> () h () ()')
        self.register_buffer('slopes', slopes, persistent=False)
        self.register_buffer('bias', None, persistent=False)

    @staticmethod
    def _get_slopes(heads):
        def get_slopes_power_of_2(n):
            start = (2 ** (-2 ** -(math.log2(n) - 3)))
            ratio = start
            return [start * ratio ** i for i in range(n)]

        if math.log2(heads).is_integer():
            return get_slopes_power_of_2(heads)

        closest_power_of_2 = 2 ** math.floor(math.log2(heads))
        return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][
                                                           :heads - closest_power_of_2]

    def forward(self, qk_dots):
        h, i, j, device = *qk_dots.shape[-3:], qk_dots.device

        if exists(self.bias) and self.bias.shape[-1] >= j:
            return qk_dots + self.bias[..., :j]

        bias = torch.arange(j, device=device)
        bias = rearrange(bias, 'j -> () () () j')
        bias = bias * self.slopes

        num_heads_unalibied = h - bias.shape[1]
        bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied))

        self.register_buffer('bias', bias, persistent=False)
        return qk_dots + self.bias


class LearnedAlibiPositionalBias(AlibiPositionalBias):
    def __init__(self, heads, bidirectional=False):
        super().__init__(heads)
        los_slopes = torch.log(self.slopes)
        self.learned_logslopes = nn.Parameter(los_slopes)

        self.bidirectional = bidirectional
        if self.bidirectional:
            self.learned_logslopes_future = nn.Parameter(los_slopes)

    def forward(self, qk_dots):
        h, i, j, device = *qk_dots.shape[-3:], qk_dots.device

        def get_slopes(param):
            return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1]))

        if exists(self.bias) and self.bias.shape[-1] >= j:
            bias = self.bias[..., :i, :j]
        else:
            i_arange = torch.arange(i, device=device)
            j_arange = torch.arange(j, device=device)
            bias = rearrange(j_arange, 'j -> 1 1 1 j') - rearrange(i_arange, 'i -> 1 1 i 1')
            self.register_buffer('bias', bias, persistent=False)

        if self.bidirectional:
            past_slopes = get_slopes(self.learned_logslopes)
            future_slopes = get_slopes(self.learned_logslopes_future)
            bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes)
        else:
            slopes = get_slopes(self.learned_logslopes)
            bias = bias * slopes

        return qk_dots + bias


class RotaryEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, max_seq_len, device):
        t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq)
        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        return rearrange(emb, 'n d -> () () n d')


def rotate_half(x):
    x = rearrange(x, '... (j d) -> ... j d', j=2)
    x1, x2 = x.unbind(dim=-2)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(t, freqs):
    seq_len = t.shape[-2]
    freqs = freqs[:, :, -seq_len:]
    return (t * freqs.cos()) + (rotate_half(t) * freqs.sin())


# norms

class Scale(nn.Module):
    def __init__(self, value, fn):
        super().__init__()
        self.value = value
        self.fn = fn

    def forward(self, x, **kwargs):
        out = self.fn(x, **kwargs)
        scale_fn = lambda t: t * self.value

        if not isinstance(out, tuple):
            return scale_fn(out)

        return (scale_fn(out[0]), *out[1:])


class Rezero(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn
        self.g = nn.Parameter(torch.zeros(1))

    def forward(self, x, **kwargs):
        out = self.fn(x, **kwargs)
        rezero_fn = lambda t: t * self.g

        if not isinstance(out, tuple):
            return rezero_fn(out)

        return (rezero_fn(out[0]), *out[1:])


class ScaleNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.scale = dim ** -0.5
        self.eps = eps
        self.g = nn.Parameter(torch.ones(1))

    def forward(self, x):
        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
        return x / norm.clamp(min=self.eps) * self.g


class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-8):
        super().__init__()
        self.scale = dim ** -0.5
        self.eps = eps
        self.g = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
        return x / norm.clamp(min=self.eps) * self.g


class RMSScaleShiftNorm(nn.Module):
    def __init__(self, dim, eps=1e-8):
        super().__init__()
        self.scale = dim ** -0.5
        self.eps = eps
        self.g = nn.Parameter(torch.ones(dim))
        self.scale_shift_process = nn.Linear(dim * 2, dim * 2)

    def forward(self, x, norm_scale_shift_inp):
        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
        norm = x / norm.clamp(min=self.eps) * self.g

        ss_emb = self.scale_shift_process(norm_scale_shift_inp)
        scale, shift = torch.chunk(ss_emb, 2, dim=1)
        h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
        return h


# residual and residual gates

class Residual(nn.Module):
    def __init__(self, dim, scale_residual=False):
        super().__init__()
        self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None

    def forward(self, x, residual):
        if exists(self.residual_scale):
            residual = residual * self.residual_scale

        return x + residual


class GRUGating(nn.Module):
    def __init__(self, dim, scale_residual=False):
        super().__init__()
        self.gru = nn.GRUCell(dim, dim)
        self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None

    def forward(self, x, residual):
        if exists(self.residual_scale):
            residual = residual * self.residual_scale

        gated_output = self.gru(
            rearrange(x, 'b n d -> (b n) d'),
            rearrange(residual, 'b n d -> (b n) d')
        )

        return gated_output.reshape_as(x)


# token shifting

def shift(t, amount, mask=None):
    if amount == 0:
        return t

    if exists(mask):
        t = t.masked_fill(~mask[..., None], 0.)

    return F.pad(t, (0, 0, amount, -amount), value=0.)


class ShiftTokens(nn.Module):
    def __init__(self, shifts, fn):
        super().__init__()
        self.fn = fn
        self.shifts = tuple(shifts)

    def forward(self, x, **kwargs):
        mask = kwargs.get('mask', None)
        shifts = self.shifts
        segments = len(shifts)
        feats_per_shift = x.shape[-1] // segments
        splitted = x.split(feats_per_shift, dim=-1)
        segments_to_shift, rest = splitted[:segments], splitted[segments:]
        segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts)))
        x = torch.cat((*segments_to_shift, *rest), dim=-1)
        return self.fn(x, **kwargs)


# feedforward

class GLU(nn.Module):
    def __init__(self, dim_in, dim_out, activation):
        super().__init__()
        self.act = activation
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * self.act(gate)


class FeedForward(nn.Module):
    def __init__(
            self,
            dim,
            dim_out=None,
            mult=4,
            glu=False,
            relu_squared=False,
            post_act_ln=False,
            dropout=0.,
            zero_init_output=False
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        activation = ReluSquared() if relu_squared else nn.GELU()

        project_in = nn.Sequential(
            nn.Linear(dim, inner_dim),
            activation
        ) if not glu else GLU(dim, inner_dim, activation)

        self.net = nn.Sequential(
            project_in,
            nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(),
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out)
        )

        # init last linear layer to 0
        if zero_init_output:
            init_zero_(self.net[-1])

    def forward(self, x):
        return self.net(x)


# attention.

class Attention(nn.Module):
    def __init__(
            self,
            dim,
            dim_head=DEFAULT_DIM_HEAD,
            heads=8,
            causal=False,
            talking_heads=False,
            head_scale=False,
            collab_heads=False,
            collab_compression=.3,
            sparse_topk=None,
            use_entmax15=False,
            num_mem_kv=0,
            dropout=0.,
            on_attn=False,
            gate_values=False,
            zero_init_output=False,
            max_attend_past=None,
            qk_norm=False,
            scale_init_value=None,
            rel_pos_bias=False,
            rel_pos_num_buckets=32,
            rel_pos_max_distance=128,
    ):
        super().__init__()
        self.scale = dim_head ** -0.5

        self.heads = heads
        self.causal = causal
        self.max_attend_past = max_attend_past

        qk_dim = v_dim = dim_head * heads

        # collaborative heads
        self.collab_heads = collab_heads
        if self.collab_heads:
            qk_dim = int(collab_compression * qk_dim)
            self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim))

        self.to_q = nn.Linear(dim, qk_dim, bias=False)
        self.to_k = nn.Linear(dim, qk_dim, bias=False)
        self.to_v = nn.Linear(dim, v_dim, bias=False)

        self.dropout = nn.Dropout(dropout)

        # add GLU gating for aggregated values, from alphafold2
        self.to_v_gate = None
        if gate_values:
            self.to_v_gate = nn.Linear(dim, v_dim)
            nn.init.constant_(self.to_v_gate.weight, 0)
            nn.init.constant_(self.to_v_gate.bias, 1)

        # cosine sim attention
        self.qk_norm = qk_norm
        if qk_norm:
            scale_init_value = default(scale_init_value,
                                       -3)  # if not provided, initialize as though it were sequence length of 1024
            self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value)

        # talking heads
        self.talking_heads = talking_heads
        if talking_heads:
            self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
            self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))

        # head scaling
        self.head_scale = head_scale
        if head_scale:
            self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))

        # explicit topk sparse attention
        self.sparse_topk = sparse_topk

        # entmax
        self.attn_fn = entmax15 if use_entmax15 else F.softmax

        # add memory key / values
        self.num_mem_kv = num_mem_kv
        if num_mem_kv > 0:
            self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
            self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))

        # attention on attention
        self.attn_on_attn = on_attn
        self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim)

        self.rel_pos_bias = rel_pos_bias
        if rel_pos_bias:
            assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
            self.rel_pos = RelativePositionBias(scale=dim_head ** 0.5, causal=causal, heads=heads,
                                                num_buckets=rel_pos_num_buckets, max_distance=rel_pos_max_distance)

        # init output projection 0
        if zero_init_output:
            init_zero_(self.to_out)

    def forward(
            self,
            x,
            context=None,
            mask=None,
            context_mask=None,
            attn_mask=None,
            sinusoidal_emb=None,
            rotary_pos_emb=None,
            prev_attn=None,
            mem=None,
            layer_past=None,
    ):
        b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.collab_heads, self.head_scale, self.scale, x.device, exists(
            context)
        kv_input = default(context, x)

        q_input = x
        k_input = kv_input
        v_input = kv_input

        if exists(mem):
            k_input = torch.cat((mem, k_input), dim=-2)
            v_input = torch.cat((mem, v_input), dim=-2)

        if exists(sinusoidal_emb):
            # in shortformer, the query would start at a position offset depending on the past cached memory
            offset = k_input.shape[-2] - q_input.shape[-2]
            q_input = q_input + sinusoidal_emb(q_input, offset=offset)
            k_input = k_input + sinusoidal_emb(k_input)

        q = self.to_q(q_input)
        k = self.to_k(k_input)
        v = self.to_v(v_input)

        if not collab_heads:
            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
        else:
            q = einsum('b i d, h d -> b h i d', q, self.collab_mixing)
            k = rearrange(k, 'b n d -> b () n d')
            v = rearrange(v, 'b n (h d) -> b h n d', h=h)

        if layer_past is not None:
            past_key, past_value = layer_past
            k = torch.cat([past_key, k], dim=-2)
            v = torch.cat([past_value, v], dim=-2)
        k_cache = k
        v_cache = v

        if exists(rotary_pos_emb) and not has_context:
            l = rotary_pos_emb.shape[-1]
            (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v))
            ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl))
            q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr)))

        input_mask = None
        if any(map(exists, (mask, context_mask))):
            q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
            k_mask = q_mask if not exists(context) else context_mask
            k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
            q_mask = rearrange(q_mask, 'b i -> b () i ()')
            k_mask = rearrange(k_mask, 'b j -> b () () j')
            input_mask = q_mask * k_mask

        if self.num_mem_kv > 0:
            mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
            k = torch.cat((mem_k, k), dim=-2)
            v = torch.cat((mem_v, v), dim=-2)
            if exists(input_mask):
                input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)

        if collab_heads:
            k = k.expand(-1, h, -1, -1)

        if self.qk_norm:
            q, k = map(l2norm, (q, k))
            scale = 1 / (self.scale.exp().clamp(min=1e-2))

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * scale
        mask_value = max_neg_value(dots)

        if exists(prev_attn):
            dots = dots + prev_attn

        pre_softmax_attn = dots.clone()

        if talking_heads:
            dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()

        if self.rel_pos_bias:
            dots = self.rel_pos(dots)

        if exists(input_mask):
            dots.masked_fill_(~input_mask, mask_value)
            del input_mask

        if exists(attn_mask):
            assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
            if attn_mask.ndim == 2:
                attn_mask = rearrange(attn_mask, 'i j -> () () i j')
            elif attn_mask.ndim == 3:
                attn_mask = rearrange(attn_mask, 'h i j -> () h i j')
            dots.masked_fill_(~attn_mask, mask_value)

        if exists(self.max_attend_past):
            i, j = dots.shape[-2:]
            range_q = torch.arange(j - i, j, device=device)
            range_k = torch.arange(j, device=device)
            dist = rearrange(range_q, 'i -> () () i ()') - rearrange(range_k, 'j -> () () () j')
            mask = dist > self.max_attend_past
            dots.masked_fill_(mask, mask_value)
            del mask

        if self.causal:
            i, j = dots.shape[-2:]
            r = torch.arange(i, device=device)
            mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
            mask = F.pad(mask, (j - i, 0), value=False)
            dots.masked_fill_(mask, mask_value)
            del mask

        if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
            top, _ = dots.topk(self.sparse_topk, dim=-1)
            vk = top[..., -1].unsqueeze(-1).expand_as(dots)
            mask = dots < vk
            dots.masked_fill_(mask, mask_value)
            del mask

        attn = self.attn_fn(dots, dim=-1)
        post_softmax_attn = attn.clone()

        attn = self.dropout(attn)

        if talking_heads:
            attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()

        out = einsum('b h i j, b h j d -> b h i d', attn, v)

        if head_scale:
            out = out * self.head_scale_params

        out = rearrange(out, 'b h n d -> b n (h d)')

        if exists(self.to_v_gate):
            gates = self.to_v_gate(x)
            out = out * gates.sigmoid()

        intermediates = Intermediates(
            pre_softmax_attn=pre_softmax_attn,
            post_softmax_attn=post_softmax_attn
        )

        return self.to_out(out), intermediates, k_cache, v_cache


class AttentionLayers(nn.Module):
    def __init__(
            self,
            dim,
            depth,
            heads=8,
            causal=False,
            cross_attend=False,
            only_cross=False,
            use_scalenorm=False,
            use_rms_scaleshift_norm=False,
            use_rmsnorm=False,
            use_rezero=False,
            alibi_pos_bias=False,
            alibi_num_heads=None,
            alibi_learned=False,
            position_infused_attn=False,
            rotary_pos_emb=False,
            rotary_emb_dim=None,
            custom_layers=None,
            sandwich_coef=None,
            par_ratio=None,
            residual_attn=False,
            cross_residual_attn=False,
            macaron=False,
            pre_norm=True,
            gate_residual=False,
            scale_residual=False,
            shift_tokens=0,
            sandwich_norm=False,
            use_qk_norm_attn=False,
            qk_norm_attn_seq_len=None,
            zero_init_branch_output=False,
            **kwargs
    ):
        super().__init__()
        ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
        attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)

        dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)

        self.dim = dim
        self.depth = depth
        self.layers = nn.ModuleList([])
        self.causal = causal

        rel_pos_bias = 'rel_pos_bias' in attn_kwargs
        self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb
        self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None

        rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
        self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None

        assert not (
                    alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'

        if alibi_pos_bias:
            alibi_num_heads = default(alibi_num_heads, heads)
            assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
            alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias
            self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal)
        else:
            self.rel_pos = None

        assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
        self.pre_norm = pre_norm
        self.sandwich_norm = sandwich_norm

        self.residual_attn = residual_attn
        self.cross_residual_attn = cross_residual_attn
        self.cross_attend = cross_attend

        norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
        norm_class = RMSNorm if use_rmsnorm else norm_class
        norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class
        norm_fn = partial(norm_class, dim)

        norm_fn = nn.Identity if use_rezero else norm_fn
        branch_fn = Rezero if use_rezero else None

        if cross_attend and not only_cross:
            default_block = ('a', 'c', 'f')
        elif cross_attend and only_cross:
            default_block = ('c', 'f')
        else:
            default_block = ('a', 'f')

        if macaron:
            default_block = ('f',) + default_block

        # qk normalization

        if use_qk_norm_attn:
            attn_scale_init_value = -math.log(math.log2(qk_norm_attn_seq_len ** 2 - qk_norm_attn_seq_len)) if exists(
                qk_norm_attn_seq_len) else None
            attn_kwargs = {**attn_kwargs, 'qk_norm': True, 'scale_init_value': attn_scale_init_value}

        # zero init

        if zero_init_branch_output:
            attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
            ff_kwargs = {**ff_kwargs, 'zero_init_output': True}

        # calculate layer block order

        if exists(custom_layers):
            layer_types = custom_layers
        elif exists(par_ratio):
            par_depth = depth * len(default_block)
            assert 1 < par_ratio <= par_depth, 'par ratio out of range'
            default_block = tuple(filter(not_equals('f'), default_block))
            par_attn = par_depth // par_ratio
            depth_cut = par_depth * 2 // 3  # 2 / 3 attention layer cutoff suggested by PAR paper
            par_width = (depth_cut + depth_cut // par_attn) // par_attn
            assert len(default_block) <= par_width, 'default block is too large for par_ratio'
            par_block = default_block + ('f',) * (par_width - len(default_block))
            par_head = par_block * par_attn
            layer_types = par_head + ('f',) * (par_depth - len(par_head))
        elif exists(sandwich_coef):
            assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
            layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
        else:
            layer_types = default_block * depth

        self.layer_types = layer_types
        self.num_attn_layers = len(list(filter(equals('a'), layer_types)))

        # calculate token shifting

        shift_tokens = cast_tuple(shift_tokens, len(layer_types))

        # iterate and construct layers

        for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
            is_last_layer = ind == (len(self.layer_types) - 1)

            if layer_type == 'a':
                layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
            elif layer_type == 'c':
                layer = Attention(dim, heads=heads, **attn_kwargs)
            elif layer_type == 'f':
                layer = FeedForward(dim, **ff_kwargs)
                layer = layer if not macaron else Scale(0.5, layer)
            else:
                raise Exception(f'invalid layer type {layer_type}')

            if layer_shift_tokens > 0:
                shift_range_upper = layer_shift_tokens + 1
                shift_range_lower = -layer_shift_tokens if not causal else 0
                layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)

            if exists(branch_fn):
                layer = branch_fn(layer)

            residual_fn = GRUGating if gate_residual else Residual
            residual = residual_fn(dim, scale_residual=scale_residual)

            layer_uses_qk_norm = use_qk_norm_attn and layer_type in ('a', 'c')

            pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None
            post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None
            post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None

            norms = nn.ModuleList([
                pre_branch_norm,
                post_branch_norm,
                post_main_norm
            ])

            self.layers.append(nn.ModuleList([
                norms,
                layer,
                residual
            ]))

    def forward(
            self,
            x,
            context=None,
            full_context=None,  # for passing a list of hidden states from an encoder
            mask=None,
            context_mask=None,
            attn_mask=None,
            mems=None,
            return_hiddens=False,
            norm_scale_shift_inp=None,
            past_key_values=None,
            expected_seq_len=None,
    ):

        assert not (self.cross_attend ^ (exists(context) or exists(
            full_context))), 'context must be passed in if cross_attend is set to True'
        assert context is None or full_context is None, 'only one of full_context or context can be provided'

        hiddens = []
        intermediates = []
        prev_attn = None
        prev_cross_attn = None

        mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
        norm_args = {}
        if exists(norm_scale_shift_inp):
            norm_args['norm_scale_shift_inp'] = norm_scale_shift_inp

        rotary_pos_emb = None
        if exists(self.rotary_pos_emb):
            if not self.training and self.causal:
                assert expected_seq_len is not None, "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`"
            elif expected_seq_len is None:
                expected_seq_len = 0
            seq_len = x.shape[1]
            if past_key_values is not None:
                seq_len += past_key_values[0][0].shape[-2]
            max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len])
            rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device)

        present_key_values = []
        cross_attn_count = 0
        for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
            if layer_type == 'a':
                layer_mem = mems.pop(0) if mems else None

            residual = x

            pre_branch_norm, post_branch_norm, post_main_norm = norm

            if exists(pre_branch_norm):
                x = pre_branch_norm(x, **norm_args)

            if layer_type == 'a' or layer_type == 'c':
                if past_key_values is not None:
                    layer_kv = past_key_values.pop(0)
                    layer_past = tuple(s.to(x.device) for s in layer_kv)
                else:
                    layer_past = None

            if layer_type == 'a':
                out, inter, k, v = checkpoint(block, x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb,
                                        prev_attn, layer_mem, layer_past)
            elif layer_type == 'c':
                if exists(full_context):
                    out, inter, k, v = checkpoint(block, x, full_context[cross_attn_count], mask, context_mask, None, None,
                                            None, prev_attn, None, layer_past)
                else:
                    out, inter, k, v = checkpoint(block, x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past)
            elif layer_type == 'f':
                out = checkpoint(block, x)

            if layer_type == 'a' or layer_type == 'c' and present_key_values is not None:
                present_key_values.append((k.detach(), v.detach()))

            if exists(post_branch_norm):
                out = post_branch_norm(out, **norm_args)

            x = residual_fn(out, residual)

            if layer_type in ('a', 'c'):
                intermediates.append(inter)

            if layer_type == 'a' and self.residual_attn:
                prev_attn = inter.pre_softmax_attn
            elif layer_type == 'c' and self.cross_residual_attn:
                prev_cross_attn = inter.pre_softmax_attn

            if exists(post_main_norm):
                x = post_main_norm(x, **norm_args)

            if layer_type == 'c':
                cross_attn_count += 1

            if layer_type == 'f':
                hiddens.append(x)

        if return_hiddens:
            intermediates = LayerIntermediates(
                hiddens=hiddens,
                attn_intermediates=intermediates,
                past_key_values=present_key_values
            )

            return x, intermediates

        return x


class Encoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on encoder'
        super().__init__(causal=False, **kwargs)


class Decoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on decoder'
        super().__init__(causal=True, **kwargs)


class CrossAttender(AttentionLayers):
    def __init__(self, **kwargs):
        super().__init__(cross_attend=True, only_cross=True, **kwargs)


class ViTransformerWrapper(nn.Module):
    def __init__(
            self,
            *,
            image_size,
            patch_size,
            attn_layers,
            num_classes=None,
            dropout=0.,
            emb_dropout=0.
    ):
        super().__init__()
        assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
        assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
        dim = attn_layers.dim
        num_patches = (image_size // patch_size) ** 2
        patch_dim = 3 * patch_size ** 2

        self.patch_size = patch_size

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.patch_to_embedding = nn.Linear(patch_dim, dim)
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.attn_layers = attn_layers
        self.norm = nn.LayerNorm(dim)
        self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None

    def forward(
            self,
            img,
            return_embeddings=False
    ):
        p = self.patch_size

        x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
        x = self.patch_to_embedding(x)
        b, n, _ = x.shape

        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embedding[:, :(n + 1)]
        x = self.dropout(x)

        x = self.attn_layers(x)
        x = self.norm(x)

        if not exists(self.mlp_head) or return_embeddings:
            return x

        return self.mlp_head(x[:, 0])


class TransformerWrapper(nn.Module):
    def __init__(
            self,
            *,
            num_tokens,
            max_seq_len,
            attn_layers,
            emb_dim=None,
            max_mem_len=0.,
            shift_mem_down=0,
            emb_dropout=0.,
            num_memory_tokens=None,
            tie_embedding=False,
            use_pos_emb=True
    ):
        super().__init__()
        assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'

        dim = attn_layers.dim
        emb_dim = default(emb_dim, dim)

        self.max_seq_len = max_seq_len
        self.max_mem_len = max_mem_len
        self.shift_mem_down = shift_mem_down

        self.token_emb = nn.Embedding(num_tokens, emb_dim)
        self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
                    use_pos_emb and not attn_layers.has_pos_emb) else always(0)
        self.emb_dropout = nn.Dropout(emb_dropout)

        self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
        self.attn_layers = attn_layers
        self.norm = nn.LayerNorm(dim)

        self.init_()

        self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()

        # memory tokens (like [cls]) from Memory Transformers paper
        num_memory_tokens = default(num_memory_tokens, 0)
        self.num_memory_tokens = num_memory_tokens
        if num_memory_tokens > 0:
            self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))

    def init_(self):
        nn.init.kaiming_normal_(self.token_emb.weight)

    def forward(
            self,
            x,
            return_embeddings=False,
            mask=None,
            return_hiddens=False,
            return_attn=False,
            mems=None,
            use_cache=False,
            **kwargs
    ):
        b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
        x = self.token_emb(x)
        x = x + self.pos_emb(x)
        x = self.emb_dropout(x)

        x = self.project_emb(x)

        if num_mem > 0:
            mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
            x = torch.cat((mem, x), dim=1)

            # auto-handle masking after appending memory tokens
            if exists(mask):
                mask = F.pad(mask, (num_mem, 0), value=True)

        if self.shift_mem_down and exists(mems):
            mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
            mems = [*mems_r, *mems_l]

        x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
        x = self.norm(x)

        mem, x = x[:, :num_mem], x[:, num_mem:]

        out = self.to_logits(x) if not return_embeddings else x

        if return_hiddens:
            hiddens = intermediates.hiddens
            return out, hiddens

        res = [out]
        if return_attn:
            attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
            res.append(attn_maps)
        if use_cache:
            res.append(intermediates.past_key_values)

        if len(res) > 1:
            return tuple(res)
        return res[0]


class ContinuousTransformerWrapper(nn.Module):
    def __init__(
            self,
            *,
            max_seq_len,
            attn_layers,
            dim_in=None,
            dim_out=None,
            emb_dim=None,
            emb_dropout=0.,
            use_pos_emb=True
    ):
        super().__init__()
        assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'

        dim = attn_layers.dim

        self.max_seq_len = max_seq_len

        self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) if (
                    use_pos_emb and not attn_layers.has_pos_emb) else always(0)
        self.emb_dropout = nn.Dropout(emb_dropout)

        self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()

        self.attn_layers = attn_layers
        self.norm = nn.LayerNorm(dim)

        self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()

    def forward(
            self,
            x,
            return_embeddings=False,
            mask=None,
            return_attn=False,
            mems=None,
            use_cache=False,
            **kwargs
    ):
        b, n, _, device = *x.shape, x.device

        x = self.project_in(x)
        x = x + self.pos_emb(x)
        x = self.emb_dropout(x)

        x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
        x = self.norm(x)

        out = self.project_out(x) if not return_embeddings else x

        res = [out]
        if return_attn:
            attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
            res.append(attn_maps)
        if use_cache:
            res.append(intermediates.past_key_values)

        if len(res) > 1:
            return tuple(res)
        return res[0]