File size: 4,772 Bytes
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from models.transformer import Transformer


def exists(val):
    return val is not None


def masked_mean(t, mask, dim = 1):
    t = t.masked_fill(~mask[:, :, None], 0.)
    return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]


class VoiceCLIP(nn.Module):
    """
    CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
    transcribed text.

    Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
    """

    def __init__(
            self,
            *,
            dim_text=512,
            dim_speech=512,
            dim_latent=512,
            num_text_tokens=256,
            text_enc_depth=6,
            text_seq_len=120,
            text_heads=8,
            num_speech_tokens=8192,
            speech_enc_depth=6,
            speech_heads=8,
            speech_seq_len=250,
            text_mask_percentage=0,
            voice_mask_percentage=0,
            wav_token_compression=1024,
    ):
        super().__init__()
        self.text_emb = nn.Embedding(num_text_tokens, dim_text)
        self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
        self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
                                            heads=text_heads)
        self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)

        self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
        self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
        self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
                                              depth=speech_enc_depth, heads=speech_heads)
        self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)

        self.temperature = nn.Parameter(torch.tensor(1.))
        self.text_mask_percentage = text_mask_percentage
        self.voice_mask_percentage = voice_mask_percentage
        self.wav_token_compression = wav_token_compression

    def forward(
            self,
            text,
            text_lengths,
            speech_tokens,
            wav_lengths,
            return_loss=False
    ):
        # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
        # chopping the inputs by the maximum actual length.
        max_text_len = text_lengths.max()
        text = text[:, :max_text_len]
        max_mel_len = wav_lengths.max() // self.wav_token_compression
        speech_tokens = speech_tokens[:, :max_mel_len]

        b, device = text.shape[0], text.device
        if self.training:
            text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
            voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
        else:
            text_mask = torch.ones_like(text.float()).bool()
            voice_mask = torch.ones_like(speech_tokens.float()).bool()

        text_emb = self.text_emb(text)
        text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))

        speech_emb = self.speech_emb(speech_tokens)
        speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))

        enc_text = self.text_transformer(text_emb, mask=text_mask)
        enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)

        text_latents = masked_mean(enc_text, text_mask, dim=1)
        speech_latents = masked_mean(enc_speech, voice_mask, dim=1)

        text_latents = self.to_text_latent(text_latents)
        speech_latents = self.to_speech_latent(speech_latents)

        text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))

        temp = self.temperature.exp()

        if not return_loss:
            sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
            return sim

        sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
        labels = torch.arange(b, device=device)
        loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
        return loss


if __name__ == '__main__':
    clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
    clip(torch.randint(0,256,(2,120)),
         torch.tensor([50,100]),
         torch.randint(0,8192,(2,250)),
         torch.tensor([101,102]),
         return_loss=True)
    nonloss = clip(torch.randint(0,256,(2,120)),
         torch.tensor([50,100]),
         torch.randint(0,8192,(2,250)),
         torch.tensor([101,102]),
         return_loss=False)
    print(nonloss.shape)