Edit model card

pretoxtm-ner

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on javicorvi/pretoxtm-dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2722
  • Study Test: {'precision': 0.8222222222222222, 'recall': 0.8763157894736842, 'f1': 0.8484076433121018, 'number': 380}
  • Manifestation: {'precision': 0.841025641025641, 'recall': 0.9265536723163842, 'f1': 0.8817204301075269, 'number': 177}
  • Finding: {'precision': 0.7870485678704857, 'recall': 0.8154838709677419, 'f1': 0.8010139416983523, 'number': 775}
  • Specimen: {'precision': 0.7793427230046949, 'recall': 0.8469387755102041, 'f1': 0.8117359413202934, 'number': 392}
  • Dose: {'precision': 0.9595959595959596, 'recall': 0.9726962457337884, 'f1': 0.9661016949152542, 'number': 293}
  • Dose Qualification: {'precision': 0.8787878787878788, 'recall': 0.8787878787878788, 'f1': 0.8787878787878788, 'number': 33}
  • Sex: {'precision': 0.9279279279279279, 'recall': 0.9809523809523809, 'f1': 0.9537037037037037, 'number': 105}
  • Group: {'precision': 0.8913043478260869, 'recall': 0.8817204301075269, 'f1': 0.8864864864864864, 'number': 93}
  • Precision: 0.8298
  • Recall: 0.8719
  • F1: 0.8503
  • Accuracy: 0.9530

Model description

PretoTM NER is a model developed to recognize relevant entities associated with treatment-related findings in preclinical toxicology.

Training and evaluation data

The model was trained on javicorvi/pretoxtm-dataset.

The dataset is divided in train, validation and test.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.760003080365119e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Study Test Manifestation Finding Specimen Dose Dose Qualification Sex Group Precision Recall F1 Accuracy
0.3365 1.0 514 0.2023 {'precision': 0.740909090909091, 'recall': 0.8578947368421053, 'f1': 0.7951219512195122, 'number': 380} {'precision': 0.7874396135265701, 'recall': 0.9209039548022598, 'f1': 0.8489583333333334, 'number': 177} {'precision': 0.7055214723926381, 'recall': 0.7419354838709677, 'f1': 0.7232704402515724, 'number': 775} {'precision': 0.7312072892938497, 'recall': 0.8188775510204082, 'f1': 0.772563176895307, 'number': 392} {'precision': 0.9243986254295533, 'recall': 0.9180887372013652, 'f1': 0.9212328767123289, 'number': 293} {'precision': 0.8, 'recall': 0.8484848484848485, 'f1': 0.823529411764706, 'number': 33} {'precision': 0.9074074074074074, 'recall': 0.9333333333333333, 'f1': 0.9201877934272301, 'number': 105} {'precision': 0.7441860465116279, 'recall': 0.6881720430107527, 'f1': 0.7150837988826816, 'number': 93} 0.7617 0.8203 0.7899 0.9397
0.1325 2.0 1028 0.2012 {'precision': 0.7920792079207921, 'recall': 0.8421052631578947, 'f1': 0.8163265306122449, 'number': 380} {'precision': 0.8488372093023255, 'recall': 0.8248587570621468, 'f1': 0.836676217765043, 'number': 177} {'precision': 0.7163289630512515, 'recall': 0.775483870967742, 'f1': 0.7447335811648079, 'number': 775} {'precision': 0.723175965665236, 'recall': 0.8596938775510204, 'f1': 0.7855477855477856, 'number': 392} {'precision': 0.9013157894736842, 'recall': 0.9351535836177475, 'f1': 0.9179229480737018, 'number': 293} {'precision': 0.8181818181818182, 'recall': 0.8181818181818182, 'f1': 0.8181818181818182, 'number': 33} {'precision': 0.911504424778761, 'recall': 0.9809523809523809, 'f1': 0.944954128440367, 'number': 105} {'precision': 0.8645833333333334, 'recall': 0.8924731182795699, 'f1': 0.8783068783068784, 'number': 93} 0.7792 0.8412 0.8090 0.9450
0.0733 3.0 1542 0.2101 {'precision': 0.7451403887688985, 'recall': 0.9078947368421053, 'f1': 0.8185053380782918, 'number': 380} {'precision': 0.7922705314009661, 'recall': 0.9265536723163842, 'f1': 0.8541666666666666, 'number': 177} {'precision': 0.7481840193704601, 'recall': 0.7974193548387096, 'f1': 0.7720174890693317, 'number': 775} {'precision': 0.7676056338028169, 'recall': 0.8341836734693877, 'f1': 0.7995110024449877, 'number': 392} {'precision': 0.9276315789473685, 'recall': 0.962457337883959, 'f1': 0.9447236180904522, 'number': 293} {'precision': 0.7941176470588235, 'recall': 0.8181818181818182, 'f1': 0.8059701492537314, 'number': 33} {'precision': 0.9292035398230089, 'recall': 1.0, 'f1': 0.9633027522935781, 'number': 105} {'precision': 0.8695652173913043, 'recall': 0.8602150537634409, 'f1': 0.8648648648648649, 'number': 93} 0.7903 0.8665 0.8266 0.9484
0.0431 4.0 2056 0.2260 {'precision': 0.8477157360406091, 'recall': 0.8789473684210526, 'f1': 0.8630490956072351, 'number': 380} {'precision': 0.8190954773869347, 'recall': 0.9209039548022598, 'f1': 0.8670212765957446, 'number': 177} {'precision': 0.7653562653562653, 'recall': 0.8038709677419354, 'f1': 0.7841409691629955, 'number': 775} {'precision': 0.7897196261682243, 'recall': 0.8622448979591837, 'f1': 0.824390243902439, 'number': 392} {'precision': 0.9459459459459459, 'recall': 0.9556313993174061, 'f1': 0.9507640067911713, 'number': 293} {'precision': 0.8055555555555556, 'recall': 0.8787878787878788, 'f1': 0.8405797101449276, 'number': 33} {'precision': 0.9203539823008849, 'recall': 0.9904761904761905, 'f1': 0.9541284403669724, 'number': 105} {'precision': 0.8842105263157894, 'recall': 0.9032258064516129, 'f1': 0.8936170212765957, 'number': 93} 0.8232 0.8697 0.8458 0.9515
0.0282 5.0 2570 0.2492 {'precision': 0.835820895522388, 'recall': 0.8842105263157894, 'f1': 0.8593350383631714, 'number': 380} {'precision': 0.8333333333333334, 'recall': 0.9322033898305084, 'f1': 0.8800000000000001, 'number': 177} {'precision': 0.7820197044334976, 'recall': 0.8193548387096774, 'f1': 0.800252047889099, 'number': 775} {'precision': 0.785377358490566, 'recall': 0.8494897959183674, 'f1': 0.8161764705882352, 'number': 392} {'precision': 0.9627118644067797, 'recall': 0.9692832764505119, 'f1': 0.9659863945578231, 'number': 293} {'precision': 0.8235294117647058, 'recall': 0.8484848484848485, 'f1': 0.8358208955223881, 'number': 33} {'precision': 0.9285714285714286, 'recall': 0.9904761904761905, 'f1': 0.9585253456221199, 'number': 105} {'precision': 0.9120879120879121, 'recall': 0.8924731182795699, 'f1': 0.9021739130434783, 'number': 93} 0.8311 0.8754 0.8527 0.9528
0.0125 6.0 3084 0.2668 {'precision': 0.830423940149626, 'recall': 0.8763157894736842, 'f1': 0.852752880921895, 'number': 380} {'precision': 0.839572192513369, 'recall': 0.8870056497175142, 'f1': 0.8626373626373628, 'number': 177} {'precision': 0.7724477244772447, 'recall': 0.8103225806451613, 'f1': 0.7909319899244331, 'number': 775} {'precision': 0.7617977528089888, 'recall': 0.8647959183673469, 'f1': 0.8100358422939069, 'number': 392} {'precision': 0.9726962457337884, 'recall': 0.9726962457337884, 'f1': 0.9726962457337884, 'number': 293} {'precision': 0.875, 'recall': 0.8484848484848485, 'f1': 0.8615384615384615, 'number': 33} {'precision': 0.9279279279279279, 'recall': 0.9809523809523809, 'f1': 0.9537037037037037, 'number': 105} {'precision': 0.8913043478260869, 'recall': 0.8817204301075269, 'f1': 0.8864864864864864, 'number': 93} 0.8235 0.8697 0.8460 0.9529
0.006 7.0 3598 0.2722 {'precision': 0.8222222222222222, 'recall': 0.8763157894736842, 'f1': 0.8484076433121018, 'number': 380} {'precision': 0.841025641025641, 'recall': 0.9265536723163842, 'f1': 0.8817204301075269, 'number': 177} {'precision': 0.7870485678704857, 'recall': 0.8154838709677419, 'f1': 0.8010139416983523, 'number': 775} {'precision': 0.7793427230046949, 'recall': 0.8469387755102041, 'f1': 0.8117359413202934, 'number': 392} {'precision': 0.9595959595959596, 'recall': 0.9726962457337884, 'f1': 0.9661016949152542, 'number': 293} {'precision': 0.8787878787878788, 'recall': 0.8787878787878788, 'f1': 0.8787878787878788, 'number': 33} {'precision': 0.9279279279279279, 'recall': 0.9809523809523809, 'f1': 0.9537037037037037, 'number': 105} {'precision': 0.8913043478260869, 'recall': 0.8817204301075269, 'f1': 0.8864864864864864, 'number': 93} 0.8298 0.8719 0.8503 0.9530

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for javicorvi/pretoxtm-ner

Finetuned
(51)
this model

Dataset used to train javicorvi/pretoxtm-ner