File size: 4,163 Bytes
1242ba5
 
 
fa47a07
 
1242ba5
 
 
 
fa47a07
 
 
faae4d4
1242ba5
 
 
 
309e861
 
1242ba5
309e861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242ba5
 
 
 
 
fa47a07
1242ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faae4d4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- jan-hq/bagel_sft_binarized
- jan-hq/dolphin_binarized
- jan-hq/openhermes_binarized
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: LlamaCorn-sft-adapter
  results: []
---
<!-- header start -->
<!-- 200823 -->

<div style="width: auto; margin-left: auto; margin-right: auto"
>
<img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner"
 style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

<p align="center">
    <a href="https://jan.ai/">Jan</a
> 
    - <a href="https://discord.gg/AsJ8krTT3N">Discord</a>
</p>
<!-- header end -->

# Prompt template

ChatML
```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

# Run this model
You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux.

Jan is an open source, ChatGPT alternative that is:

- ๐Ÿ’ป  **100% offline on your machine**: Your conversations remain confidential, and visible only to you.
- ๐Ÿ—‚๏ธ **
An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time.
- ๐ŸŒ **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints

- ๐ŸŒ **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png)


# About Jan
Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones.

Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life.
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LlamaCorn-sft-adapter

This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the jan-hq/bagel_sft_binarized, the jan-hq/dolphin_binarized and the jan-hq/openhermes_binarized datasets.
It achieves the following results on the evaluation set:
- Loss: 0.9638

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.038         | 1.0   | 6606  | 1.0506          |
| 0.876         | 2.0   | 13212 | 0.9648          |
| 0.7713        | 3.0   | 19818 | 0.9638          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__LlamaCorn-1.1B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |36.94|
|AI2 Reasoning Challenge (25-Shot)|34.13|
|HellaSwag (10-Shot)              |59.33|
|MMLU (5-Shot)                    |29.01|
|TruthfulQA (0-shot)              |36.78|
|Winogrande (5-shot)              |61.96|
|GSM8k (5-shot)                   | 0.45|