File size: 16,944 Bytes
3752cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "import cv2\n",
    "import numpy as np\n",
    "\n",
    "from PIL import Image\n",
    "from transparent_background import Remover\n",
    "import pandas as pd\n",
    "from tqdm import tqdm\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Settings -> Mode=base-nightly, Device=cuda:0, Torchscript=disabled\n"
     ]
    }
   ],
   "source": [
    "# Load model\n",
    "# remover = Remover() # default setting\n",
    "# remover = Remover(mode='fast', jit=True, device='cuda:0', ckpt='~/latest.pth', url=\"https://drive.google.com/file/d/13oBl5MTVcWER3YU4fSxW3ATlVfueFQPY/view?usp=share_link\", ckpt_name=\"ckpt_base.pth\")\n",
    "remover = Remover(mode=\"base-nightly\")  # nightly release checkpoint"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Usage for image\n",
    "img = Image.open(\"../data/raw/images/egyptian/1953/1953.1-tt.jpg\").convert(\"RGB\")  # read image\n",
    "\n",
    "out = remover.process(img)  # default setting - transparent background\n",
    "# out = remover.process(img, type='rgba') # same as above\n",
    "# out = remover.process(img, type='map') # object map only\n",
    "# out = remover.process(img, type='green') # image matting - green screen\n",
    "# out = remover.process(img, type='white')  # change backround with white color\n",
    "# out = remover.process(img, type=[255, 0, 0]) # change background with color code [255, 0, 0]\n",
    "# out = remover.process(img, type='blur') # blur background\n",
    "# out = remover.process(img, type='overlay') # overlay object map onto the image\n",
    "# out = remover.process(img, type='samples/background.jpg') # use another image as a background\n",
    "\n",
    "# out = remover.process(img, threshold=0.5) # use threhold parameter for hard prediction.\n",
    "\n",
    "out.save(\"output.png\")  # save result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "img_df = pd.read_csv(\"../data/processed/OM_file_to_obj.csv\")\n",
    "img_df[\"full_path\"] = img_df.apply(lambda row: os.path.join(row[\"root\"], row[\"file\"]), axis=1)\n",
    "img_df[\"new_root\"] = img_df[\"root\"].apply(\n",
    "    lambda x: x.replace(\"data/raw/images/\", \"data/processed/OM_images_white/\")\n",
    ")\n",
    "img_df[\"new_full_path\"] = img_df.apply(lambda row: os.path.join(row[\"new_root\"], row[\"file\"]), axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>file</th>\n",
       "      <th>root</th>\n",
       "      <th>obj_num</th>\n",
       "      <th>full_path</th>\n",
       "      <th>new_root</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1985.15.68.jpg</td>\n",
       "      <td>data/raw/images/fulling_mill/1985</td>\n",
       "      <td>durma.1985.15.68</td>\n",
       "      <td>data/raw/images/fulling_mill/1985/1985.15.68.jpg</td>\n",
       "      <td>data/processed/OM_images_white/fulling_mill/1985</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1985.52.37.ff2.jpg</td>\n",
       "      <td>data/raw/images/fulling_mill/1985</td>\n",
       "      <td>durma.1985.52.37</td>\n",
       "      <td>data/raw/images/fulling_mill/1985/1985.52.37.f...</td>\n",
       "      <td>data/processed/OM_images_white/fulling_mill/1985</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1985.81.4496 d2.jpg</td>\n",
       "      <td>data/raw/images/fulling_mill/1985</td>\n",
       "      <td>durma.1985.81.4496</td>\n",
       "      <td>data/raw/images/fulling_mill/1985/1985.81.4496...</td>\n",
       "      <td>data/processed/OM_images_white/fulling_mill/1985</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1985.9.1.1-d4.jpg</td>\n",
       "      <td>data/raw/images/fulling_mill/1985</td>\n",
       "      <td>durma.1985.9.1</td>\n",
       "      <td>data/raw/images/fulling_mill/1985/1985.9.1.1-d...</td>\n",
       "      <td>data/processed/OM_images_white/fulling_mill/1985</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1985.52.37.sf2.jpg</td>\n",
       "      <td>data/raw/images/fulling_mill/1985</td>\n",
       "      <td>durma.1985.52.37</td>\n",
       "      <td>data/raw/images/fulling_mill/1985/1985.52.37.s...</td>\n",
       "      <td>data/processed/OM_images_white/fulling_mill/1985</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39239</th>\n",
       "      <td>2014.1.2 bb.jpg</td>\n",
       "      <td>data/raw/images/egyptian/2014</td>\n",
       "      <td>durom.2014.1.2</td>\n",
       "      <td>data/raw/images/egyptian/2014/2014.1.2 bb.jpg</td>\n",
       "      <td>data/processed/OM_images_white/egyptian/2014</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39240</th>\n",
       "      <td>2014.1.71 ll.jpg</td>\n",
       "      <td>data/raw/images/egyptian/2014</td>\n",
       "      <td>durom.2014.1.71</td>\n",
       "      <td>data/raw/images/egyptian/2014/2014.1.71 ll.jpg</td>\n",
       "      <td>data/processed/OM_images_white/egyptian/2014</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39241</th>\n",
       "      <td>2014.1.2 rr.jpg</td>\n",
       "      <td>data/raw/images/egyptian/2014</td>\n",
       "      <td>durom.2014.1.2</td>\n",
       "      <td>data/raw/images/egyptian/2014/2014.1.2 rr.jpg</td>\n",
       "      <td>data/processed/OM_images_white/egyptian/2014</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39242</th>\n",
       "      <td>1963.4.jpg</td>\n",
       "      <td>data/raw/images/egyptian/1963</td>\n",
       "      <td>durom.1963.4</td>\n",
       "      <td>data/raw/images/egyptian/1963/1963.4.jpg</td>\n",
       "      <td>data/processed/OM_images_white/egyptian/1963</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39243</th>\n",
       "      <td>1963.4.2.jpg</td>\n",
       "      <td>data/raw/images/egyptian/1963</td>\n",
       "      <td>durom.1963.4</td>\n",
       "      <td>data/raw/images/egyptian/1963/1963.4.2.jpg</td>\n",
       "      <td>data/processed/OM_images_white/egyptian/1963</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>39244 rows × 5 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                      file                               root  \\\n",
       "0           1985.15.68.jpg  data/raw/images/fulling_mill/1985   \n",
       "1       1985.52.37.ff2.jpg  data/raw/images/fulling_mill/1985   \n",
       "2      1985.81.4496 d2.jpg  data/raw/images/fulling_mill/1985   \n",
       "3        1985.9.1.1-d4.jpg  data/raw/images/fulling_mill/1985   \n",
       "4       1985.52.37.sf2.jpg  data/raw/images/fulling_mill/1985   \n",
       "...                    ...                                ...   \n",
       "39239      2014.1.2 bb.jpg      data/raw/images/egyptian/2014   \n",
       "39240     2014.1.71 ll.jpg      data/raw/images/egyptian/2014   \n",
       "39241      2014.1.2 rr.jpg      data/raw/images/egyptian/2014   \n",
       "39242           1963.4.jpg      data/raw/images/egyptian/1963   \n",
       "39243         1963.4.2.jpg      data/raw/images/egyptian/1963   \n",
       "\n",
       "                  obj_num                                          full_path  \\\n",
       "0        durma.1985.15.68   data/raw/images/fulling_mill/1985/1985.15.68.jpg   \n",
       "1        durma.1985.52.37  data/raw/images/fulling_mill/1985/1985.52.37.f...   \n",
       "2      durma.1985.81.4496  data/raw/images/fulling_mill/1985/1985.81.4496...   \n",
       "3          durma.1985.9.1  data/raw/images/fulling_mill/1985/1985.9.1.1-d...   \n",
       "4        durma.1985.52.37  data/raw/images/fulling_mill/1985/1985.52.37.s...   \n",
       "...                   ...                                                ...   \n",
       "39239      durom.2014.1.2      data/raw/images/egyptian/2014/2014.1.2 bb.jpg   \n",
       "39240     durom.2014.1.71     data/raw/images/egyptian/2014/2014.1.71 ll.jpg   \n",
       "39241      durom.2014.1.2      data/raw/images/egyptian/2014/2014.1.2 rr.jpg   \n",
       "39242        durom.1963.4           data/raw/images/egyptian/1963/1963.4.jpg   \n",
       "39243        durom.1963.4         data/raw/images/egyptian/1963/1963.4.2.jpg   \n",
       "\n",
       "                                               new_root  \n",
       "0      data/processed/OM_images_white/fulling_mill/1985  \n",
       "1      data/processed/OM_images_white/fulling_mill/1985  \n",
       "2      data/processed/OM_images_white/fulling_mill/1985  \n",
       "3      data/processed/OM_images_white/fulling_mill/1985  \n",
       "4      data/processed/OM_images_white/fulling_mill/1985  \n",
       "...                                                 ...  \n",
       "39239      data/processed/OM_images_white/egyptian/2014  \n",
       "39240      data/processed/OM_images_white/egyptian/2014  \n",
       "39241      data/processed/OM_images_white/egyptian/2014  \n",
       "39242      data/processed/OM_images_white/egyptian/1963  \n",
       "39243      data/processed/OM_images_white/egyptian/1963  \n",
       "\n",
       "[39244 rows x 5 columns]"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "img_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  0%|          | 84/39244 [00:06<52:59, 12.32it/s] \n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[26], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m index, row \u001b[38;5;129;01min\u001b[39;00m tqdm(img_df\u001b[38;5;241m.\u001b[39miterrows(), total\u001b[38;5;241m=\u001b[39mimg_df\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]):\n\u001b[1;32m      2\u001b[0m     img \u001b[38;5;241m=\u001b[39m Image\u001b[38;5;241m.\u001b[39mopen(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m../\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m+\u001b[39mrow[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfull_path\u001b[39m\u001b[38;5;124m'\u001b[39m])\u001b[38;5;241m.\u001b[39mconvert(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mRGB\u001b[39m\u001b[38;5;124m'\u001b[39m)  \u001b[38;5;66;03m# read image\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m     out \u001b[38;5;241m=\u001b[39m \u001b[43mremover\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprocess\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mwhite\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m  \u001b[38;5;66;03m# change backround with white color\u001b[39;00m\n\u001b[1;32m      4\u001b[0m     \u001b[38;5;66;03m# make sure the directory exists\u001b[39;00m\n\u001b[1;32m      5\u001b[0m     os\u001b[38;5;241m.\u001b[39mmakedirs(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m../\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m+\u001b[39mrow[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnew_root\u001b[39m\u001b[38;5;124m'\u001b[39m], exist_ok\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
      "File \u001b[0;32m~/.virtualenvs/ArtifactClassification/lib/python3.10/site-packages/transparent_background/Remover.py:154\u001b[0m, in \u001b[0;36mRemover.process\u001b[0;34m(self, img, type, threshold)\u001b[0m\n\u001b[1;32m    137\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    138\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[1;32m    139\u001b[0m \u001b[38;5;124;03m    img (PIL.Image): input image as PIL.Image type\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    151\u001b[0m \n\u001b[1;32m    152\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    153\u001b[0m shape \u001b[38;5;241m=\u001b[39m img\u001b[38;5;241m.\u001b[39msize[::\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m--> 154\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtransform\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    155\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m    156\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice)\n",
      "File \u001b[0;32m~/.virtualenvs/ArtifactClassification/lib/python3.10/site-packages/torchvision/transforms/transforms.py:95\u001b[0m, in \u001b[0;36mCompose.__call__\u001b[0;34m(self, img)\u001b[0m\n\u001b[1;32m     93\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, img):\n\u001b[1;32m     94\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransforms:\n\u001b[0;32m---> 95\u001b[0m         img \u001b[38;5;241m=\u001b[39m \u001b[43mt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     96\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m img\n",
      "File \u001b[0;32m~/.virtualenvs/ArtifactClassification/lib/python3.10/site-packages/transparent_background/utils.py:105\u001b[0m, in \u001b[0;36mnormalize.__call__\u001b[0;34m(self, img)\u001b[0m\n\u001b[1;32m    103\u001b[0m img \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdiv\n\u001b[1;32m    104\u001b[0m img \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmean\n\u001b[0;32m--> 105\u001b[0m img \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstd\n\u001b[1;32m    107\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m img\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "for index, row in tqdm(img_df.iterrows(), total=img_df.shape[0]):\n",
    "    img = Image.open('../' + row['full_path']).convert('RGB')  # read image\n",
    "    out = remover.process(img, type='white')  # change backround with white color\n",
    "    # make sure the directory exists\n",
    "    os.makedirs('../' + row['new_root'], exist_ok=True)\n",
    "    out.save('../' + row['new_full_path'])  # save result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ArtifactClassification",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}