以下は推論用コードです。
- 事前に以下をインストールしてください。
- pip install -q numpy==1.26.4
- pip install -q vllm==0.6.4
- pip install -q bitsandbytes==0.44.1
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
import torch
import json
from datasets import load_dataset
from huggingface_hub import snapshot_download
id = "llm-jp-3-13b-it-bs4-ac10-step370-lora"
lora_path = snapshot_download(repo_id="jaked97/"+ id)
model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
tasks = load_dataset("json", data_files="./elyza-tasks-100-TV_0.jsonl", split="train")
prompts = [
f"""### instruction:
あなたは親切なAIアシスタントです。
### input:
{input}
### output:
""" for input in tasks["input"]]
llm = LLM(
model=model_id,
gpu_memory_utilization=0.99,
quantization="bitsandbytes",
load_format="bitsandbytes",
trust_remote_code=True,
enforce_eager=True,
enable_lora=True,
max_lora_rank=64,
)
outputs = llm.generate(
prompts,
sampling_params = SamplingParams(
temperature=0,
max_tokens=1024,
min_tokens=1,
repetition_penalty=1.2,
skip_special_tokens=True,
seed=97,
),
lora_request=LoRARequest("sql_adapter", 1, lora_path),
)
with open(f"./{id}_max1024-nf4-vllm.jsonl", 'w', encoding='utf-8') as f:
for i in range(len(outputs)):
result = {
"task_id" : tasks[i]["task_id"],
"input" : tasks[i]["input"],
"output" : outputs[i].outputs[0].text
}
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Uploaded model
- Developed by: jaked97
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for jaked97/llm-jp-3-13b-it-bs4-ac10-step370-lora
Base model
llm-jp/llm-jp-3-13b